

## 电能质量分析仪



使用说明

|    |     | KEW6315                                                       |
|----|-----|---------------------------------------------------------------|
| 目  | 录   | 1                                                             |
| 包  | 装内茗 | 穿的确认5                                                         |
| 安  | 全事项 | 页8                                                            |
| 1. | 产品  | 概要11                                                          |
|    | 1.1 | 功能概略11                                                        |
|    | 1.2 | 特点13                                                          |
|    | 1.3 | 系统构成图14                                                       |
|    | 1.4 | 测试顺序15                                                        |
| 2. | 各部分 | 分名称16                                                         |
|    | 2.1 | 显示屏(LCD)/按键操作部分16                                             |
|    | 2.2 | 端口部分17                                                        |
|    | 2.3 | 侧面部分18                                                        |
|    | 2.4 | 电压测试线和钳形传感器19                                                 |
| 3. | 基本  | 操作20                                                          |
|    | 3.1 | 按键操作20                                                        |
|    | 3.2 | LCD 上部的显示标志21                                                 |
|    | 3.3 | 画面的显示记号 ····································                  |
|    | 3.4 | 背光灯和对比的调整······22                                             |
|    | 3.5 | 画面显示和画面构成23                                                   |
|    |     | <ul> <li>● 瞬时值 / 综合值 / 需求值</li></ul>                          |
|    |     | ● 矢量·······24                                                 |
|    |     | ● 波形                                                          |
|    |     | ● 谐波····································                      |
|    |     | <ul> <li>● 电能质重····································</li></ul> |
| Л  | 测时学 | <ul> <li>● 反定</li> <li>20</li> <li>前的准冬工作</li> </ul>          |
| 4. | 1 1 | 的17日街上1F                                                      |
|    | 4.1 | <ul> <li>● 貼上輸入端口貼纸</li></ul>                                 |
|    |     | <ul> <li>■ 贴上识别标签</li></ul>                                   |
|    |     |                                                               |

| KEW6315                  | C                                                        | contents |
|--------------------------|----------------------------------------------------------|----------|
| 4.2                      | 电源                                                       | 29       |
|                          | ● 电池的使用                                                  | 29       |
|                          | ● 画面显示 / 电池剩余量 ······                                    | 30       |
|                          | ● 干电池的设置方法 ····································          | 31       |
|                          | <ul> <li>● 电源线连接·······</li> <li>● 短台中遊</li> </ul>       | 31       |
| 4.0                      | <ul> <li>●</li></ul>                                     | ····· 32 |
| 4.3                      | SD 下的细八 / 取出力法                                           | 33       |
|                          | ● 捆八刀法                                                   | 34       |
|                          |                                                          | ····· 34 |
|                          | 4.4 电压测试线和钳形传感器的连接                                       | 35       |
|                          | <b>4.5</b> 按理电源                                          | 36       |
|                          | ● 初始回回显示 ···································             | 36       |
|                          | <ul> <li>● 注息事坝的显示</li> </ul>                            | 36       |
|                          | 4.6 记求顺序                                                 | 37       |
|                          | <ul> <li>● 记求升焰</li> <li>&gt;&gt;= /&gt;&gt;</li> </ul>  | 37       |
|                          | <ul> <li>■ 比求结果</li> <li>⇒ お**(ははません日を)"すねいます</li> </ul> | 38       |
| <b>г</b> ул <del>с</del> | ● 按"快速开始导航"开始记求······                                    | 39       |
| 5.                       |                                                          |          |
| 5.1                      | 设定坝目                                                     | 47       |
| 5.2                      | 基本设定                                                     | 48       |
|                          | ● 接线设定 ······                                            | 49       |
|                          | ● 接线                                                     | 51       |
|                          | ● 电压测试的设定                                                | 53       |
|                          | • VT/CT                                                  | 54       |
|                          | ● 电流测试的设定                                                | 56       |
|                          | ● 外部输入端口 / 基准频率的设定                                       | 58       |
| 5.3                      | 测试设定                                                     | 59       |
|                          | ● 需求的设定                                                  | 59       |
|                          | ● 需求测试                                                   | 62       |
|                          | ● 谐波分析的设定                                                | 63       |
|                          | ● 电能质量界限值的设定                                             | 65       |

| Con | itents | KE                                              | W6315 |
|-----|--------|-------------------------------------------------|-------|
|     |        | ● 闪变的滤波系数的设定                                    | 69    |
|     |        | ● 进项电容的目标功率值的设定                                 | 70    |
|     | 5.4    | 记录设定                                            | 71    |
|     |        | ● 记录项目的设定                                       | 72    |
|     |        | ● 记录项目                                          | 73    |
|     |        | ● 记录方法的设定                                       | 74    |
|     |        | ● 可保存时间                                         | 76    |
|     | 5.5    | 其他                                              | 77    |
|     |        | ● 系统环境的设定                                       | 77    |
|     |        | ● KEW6315 本体的系统设定                               | 79    |
|     | 5.6    | 保存数据                                            | 82    |
|     |        | ● 记录数据的操作                                       | 82    |
|     |        | ● 保存数据的种类                                       | 87    |
|     |        | ● 本体设定的保存和读取的操作                                 | 89    |
| 6.  | 每个副    | 画面的显示项目                                         | 92    |
|     | 6.1    | 瞬时值 "W"                                         | 92    |
|     |        | ● 一览显示测试值                                       | 92    |
|     |        | ● 放大显示测试值                                       | 96    |
|     |        | ● 显示趋势图表                                        | 97    |
|     |        | ● 变更显示测试项目和显示位置                                 | 99    |
|     | 6.2    | 综合值 "Wh"                                        | 100   |
|     | 6.3    | 需求                                              | 102   |
|     |        | ● 显示测试值                                         | 102   |
|     |        | <ul> <li>● 显示一段时间内的推移图</li></ul>                | 103   |
|     |        | ● 显示需求推移图                                       | 104   |
|     | 6.4    | 矢量                                              | 105   |
|     | 6.5    | 波形                                              | 107   |
|     | 6.6    |                                                 | 108   |
|     | 0.0    | <ul> <li>● 冬形肉显示谐波</li></ul>                    | 108   |
|     |        | <ul> <li>→ 小/日並小旧び</li> <li>● 列表显示谐波</li> </ul> | 112   |
|     |        |                                                 | 114   |

| <u>KEW6315</u> |                                         | Contents |
|----------------|-----------------------------------------|----------|
| 6.7            | 电能质量                                    | 114      |
|                | ● 使电能质量低下的项目及其现象                        |          |
|                | ● 显示事件的发生状况                             | 116      |
|                | ● 一览显示闪变测试值                             |          |
|                | ● 显示 Pst, 1 分钟的趋势图表                     |          |
|                | ● 显示 <b>Plt</b> 的推移图                    |          |
| 7. 其他马         | 功能                                      |          |
| 8. 与周记         | 边机器的连接                                  |          |
| 8.1            | PC: 与电脑的数据传输                            |          |
| 8.2            | 使用蓝牙功能                                  |          |
| 8.3            | 与外部机器的信号控制                              |          |
|                | ● 连接输出入端口                               |          |
| 8.4            | 测试线的电源供给                                |          |
| 9. 设定.         | .解析用 PC 软件                              |          |
| 10. 规格         | 名                                       |          |
| 10.1           | -<br>1 安全规格                             |          |
| 10.2           | · 二 · 二 · 二 · 二 · · · · · · · · · · · · |          |
| 10.2           | 3 测试扣枚                                  |          |
| 10.5           | ● 测试顶日米别 解析粉据粉                          |          |
|                | <ul> <li>● 瞬时测试项目</li> </ul>            |          |
|                | <ul> <li>■</li></ul>                    |          |
|                | ● 综合测试项目                                |          |
|                | ● 需求测试项目                                |          |
|                | ● 谐波测试项目                                |          |
|                | ● 电能质量测试项目                              |          |
| 10.4           | 4 钳形传感器规格                               |          |
| 11. 疑似         | 以故障                                     |          |
| 11.1           | 故障查找                                    |          |
| 11 2           | <ul><li>&gt; 错误信息的内容和相应的处理方法</li></ul>  |          |
|                |                                         | 100      |

## 开封确认

非常感谢购买我们的数字电力计"KEW6315" ,请打开包装并在使用前检查仪器。

●包装中有以下产品

| 1  | 本体     | KEW6315:1台                     |  |  |
|----|--------|--------------------------------|--|--|
| 2  | 电压测试线  | MODEL 7255:1套(红,白,蓝,黑各1根,附鳄鱼夹) |  |  |
| 3  | 电源线    | MODEL7169: 1根                  |  |  |
| 4  | USB线   | MODEL7219: 1根                  |  |  |
| 5  | 使用说明书  | 1本                             |  |  |
| 6  | CD-ROM | 1张                             |  |  |
| 7  | 电池     | 单3碱性电池LR6: 6节                  |  |  |
| 8  | SD卡    | M-8326-02: 1张 (2GB)            |  |  |
| 9  | 便携包    | MODEL9125: 1个                  |  |  |
| 10 | 输入端口贴纸 | 1张                             |  |  |
| 11 | 识别标签   | 各4根×8色(红/蓝/黄/绿/茶色/灰/黑/白)       |  |  |

可选件

| 12       钳形传感器       所购数量         13       钳形传感器说明书       1本 |       | 所购数量                                  |  |
|--------------------------------------------------------------|-------|---------------------------------------|--|
|                                                              |       | 1本                                    |  |
| 14         本体用便携箱         MODEL9132                          |       | MODEL9132                             |  |
| 15                                                           | 电源适配器 | MODEL8312 (CAT.III 150V,CAT.II 240VA) |  |



**10.** 输入端口贴纸 **11.** 识别标签

| 1   | Î  | Î   | Î   |
|-----|----|-----|-----|
| -   | -  | -   | -   |
|     | 1  | 1   | 1   |
| =   | -  |     | -   |
| =   | =  |     | =   |
| -   | 1  | 110 | 111 |
| - 0 | V. |     |     |

#### 开封确认

#### KEW6315



13. 钳形传感器说明书



14. 本体用便携箱

15. 电源适配器





| M-8128 |
|--------|
| M-8127 |
| M-8126 |
| M-8125 |
| M-8124 |
| M-8129 |
| M-8130 |
| M-8146 |
| M-8147 |
| M-8148 |
| M-8141 |
| M-8142 |
| M-8143 |
|        |

●收纳方法

使用后,请按下图放置。



● 发现产品的错误,数量不够,破损,印刷不良等情况时请和销售商联系。
 ● 请仔细保管使用说明书。

## 安全事项

本仪器根据 IEC 61010-1 电子测试装置的安全规格进行设计、生产,测试合格后在其处于最好状态下出货。 本说明书包含警告和安全规则,记载了避免人身危险和保持仪器能在长期良好状态下使用的注意事项。因此,使用 仪器前请阅读操作指南。

## 

- 使用仪器前请阅读并理解记载于说明书中的指示。
- 请将说明书保存在身边以便随时参考。
- 请务必按规定条件使用仪器。
- 必须理解并遵循说明书中的全部安全指示。
- 请仔细阅读说明书后使用。
- 钳形传感器的具体操作,请参考传感器附带说明书。

请务必遵守上述指示。在操做仪器时,如未遵循上述指示可能会在测试中造成人身伤害,仪器损害或设备 故障。

符号 禾明用户必须遵循说明书里的安全操作。必须仔细阅读说明书里标有符号的内容。

:表示若无视此标志进行错误操作,造成死亡或重伤的危险性很高。

**警告**:表示若无视此标志进行错误操作,可能造成死亡或重伤。

**注意** : 表示若无视此标志进行错误操作,可能造成死亡或重伤及仪器等物品的损伤。

#### 测试种类

危险

安全规格IEC61010中关于测试仪的使用场所的安全等级称之为测试种类。按以下内容分为O~CAT.IV。此数值越 大表示是过渡性脉冲越大的电气环境。按CAT.III设计的测试仪比CAT.II设计的测试仪可耐更高脉冲。

- O :没有直接连接主电源的其他回路
- CAT.II :带有连接插座的电源线的机器的1次回路
- CAT.III : 直接从配电盘获取电气的机器的 1 次回路和分支部分到插座的电路
- CAT.IV : 从引入线到电力计和 1 次过电流保护装置(配电盘)的电路



| <ul> <li> <b>か</b> </li> <li>             在指定的操作方法和条件以外的情况下使用的话,本仪器的保护功能将无法正常工作而可能导致仪器破损<br/>或引起触电等重大事故。使用前或在对显示结果采取措施前请在已知电源上确认是否正常工作。          </li> <li>             · 请勿在 CAT.IV/AC300V, CAT.II/AC600V, CAT.II/AC1000V 以上的回路中测量。         </li> <li>             · 请勿在易燃易爆气体或蒸汽环境中测量。 否则,测试仪器引起的火花可能导致爆炸。         </li> <li>             · 请勿在公器表面或者使用者的手潮湿时使用。         </li> <li>             · 潮试         </li> <li>             · 潮试</li> </ul> <li> <ul> <li>· 請勿在公器教量范围。             · 測试期同请勿打开电池盖。         </li> </ul> </li> <li>             · 四減式的回該勿打开电池盖。         <ul> <li>             · 电池             ·</li></ul></li> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>请注意测试时指尖等不能超过保护栏。</li> <li>保护栏:为防止操作中的触电事故,确保最低限的沿面和空间距离而画的刻印。</li> <li>测试中(通电情况下)请勿从本体的端口上取下。</li> <li>头部的金属部分请勿接触测试线的 2 条线间。</li> <li>请勿碰触头部的金属部分。</li> <li>钳形传感器 - <ul> <li>请使用专用产品。</li> <li>请使用专用产品。</li> <li>请确认测试电流是否与额定电压相符合,请使用对地最大额定电压以下的电路。</li> <li>测试中请勿连接不必要的其他物体。</li> <li>没有连接本体时请勿连接测试线。</li> <li>请注意测试时指尖等不能超过保护栏。</li> <li>保护栏:为防止操作中的触电事故,确保最低限的沿面和空间距离而画的刻印。</li> </ul> </li> </ul>                                                                                                                                                                                                                      |



● 当仪器潮湿时,必须等其干燥后储存。

必须遵守各章的 🛆 危险, 🛆 警告, 🛆 注意和注记 ( 🛄 )的内容。

以下符号为本产品中所使用的安全记号:

| $\wedge$ | 用户必须参考使用说明书中的内容  |  |  |  |
|----------|------------------|--|--|--|
|          | 有双倍绝缘或者强化绝缘保护的仪器 |  |  |  |
| ~        | AC               |  |  |  |
| <u> </u> | 接地端              |  |  |  |





#### 1.2 特点

本仪器是数字式电力计,能适用于各种不同的接线方式。传统的瞬时值,综合值,用于电力管理的需求值,谐波解析,电能质量相关的事件、用于功率改善的进相电容值的模拟操作都可同时进行,也可将电压和电流分别表示为波形和矢量图。

测试数据可存储在内存或 SD 卡中,也可将该文件通过 USB 接口或 SD 读卡器传输到 PC 上保存。或者,通过蓝 牙功能使用安卓客户端实时确认测试数据。

#### 安全设计

设计符合国际安全规格 IEC61010-1CAT.IV 300V/ CAT.III 600V/CAT.II 1000V。

#### 电能质量测试

符合电能质量测试轨迹规格 IEC61010-4-30 S 等级。高精度的频率/电压有效值测试/谐波解析之外,还能全部同时无间隙地进行电源异常的捕捉、监视所必须的上升/下降/瞬停/瞬变测试/突入电流/闪变测试。

#### 电力测试

可全部同时进行有功/无功/视在电力和电量,功率,电流有效值,相位角,中性线电流的测试。

#### 接线方式

单相2线(4系统),单相3线(2系统),三相3线(2系统),三相4线的各种测试接线。

#### 需求测试

为了能不超过设定目标值(契约电力),可简单监视使用状况。

#### 波形/矢量显示

能够测量电压和电流并以波形/矢量显示。

#### 数据保存

具有可设置记录间隔的锁定功能。可手动或按指定日期保存测试数据。

截屏功能可将画面数据传送到 SD 卡保存。

#### 2种电源方式

本仪器可使用交流电源(AC电源)和电池供电这2种电源方式。可使用单3形碱性干电池(LR6)和单3形 充电电池(Ni-MH)。请使用电池厂家专用充电器给电池充电,不能使用仪器本体进行充电。使用 AC 电源时若 发生停电,将自动由电源供给切换成电池方式。

#### 大液晶显示屏

采用彩色 TFT 大画面液晶屏,便于阅读的大画面显示。

#### 简单接线的小型轻便设计

钳式简单接线的小型轻便设计,便于设置及搬运。

#### 应用程序

SD 卡及内存中保存的数据可通过 USB 线下载到电脑。下载的文件可使用附件的 PC 软件 (KEW Windows for KEW6315)进行简单分析。也可从电脑上简单地变更仪器的设定。通过蓝牙通信功能,可使用安卓客户端实时确认测试值。

#### 外部信号输入/输出功能

通过 2 通道的模拟输入(DC 电压),温度计和照度计等模拟信号能与电力数据同时测量。 电能质量中发生事件时,从 1 通道的数字输出(DC 电压)可将接点信号传送到警报器等。



#### 1.4 测试顺序

#### 1.4 测试顺序

使用前请阅读"安全事项"(P8)。





| <u>2.2 端口 KEW6315</u>       |        |                |                                                            |  |  |
|-----------------------------|--------|----------------|------------------------------------------------------------|--|--|
| 2.2 端口                      |        |                | 交流电压输入端口<br>(VN, V1, V2, V3)<br>电流输入端口<br>(A1, A2, A3, A4) |  |  |
| 电源端口<br>按线支式                |        | 交流电压输入端口       | 电流输入端口盖<br>电流输入端口*                                         |  |  |
| 单相 <b>2</b> 线( <b>1</b> 系统) | 1P2W×1 | VN V1          | A1                                                         |  |  |
| 单相2线(2系统)                   | 1P2W×2 | VN, V1         | A1, A2                                                     |  |  |
| 单相2线(3系统)                   | 1P2W×3 | VN, V1         | A1, A2, A3                                                 |  |  |
| 单相 <b>2</b> 线(4系统)          | 1P2W×4 | VN, V1         | A1, A2, A3, A4                                             |  |  |
| 单相 <b>3</b> 线(1系统)          | 1P3W×1 | VN, V1, V2     | A1, A2                                                     |  |  |
| 单相3线(2系统)                   | 1P3W×2 | VN, V1, V2     | A1, A2, A3, A4                                             |  |  |
| 三相3线(1系统)                   | 3P3W×1 | VN, V1, V2     | A1, A2                                                     |  |  |
| 三相3线(2系统)                   | 3P3W×2 | VN, V1, V2     | A1, A2, A3, A4                                             |  |  |
| 三相 3 线 3A                   | 3P3W3A | V1, V2, V3     | A1, A2, A3                                                 |  |  |
| 三相4线                        | 3P4W×1 | VN, V1, V2, V3 | A1, A2, A3                                                 |  |  |

\* 不用于接线的电流端口只能测试有效值和谐波。

2.3 侧面部分

<端口盖关闭状态>



模拟输入/ 数字输出部分

<端口盖打开状态>







| ~ | D 上部显示的标志 |                         | KEW |
|---|-----------|-------------------------|-----|
| 2 | LCD 上部    | 显示的标志                   |     |
|   | 标志        | 状态                      |     |
|   |           | 使用电池。按不同剩余量有4种变化        |     |
|   | -         | 使用 AC 电源                |     |
|   | 35#       | 保持住画面显示更新               |     |
|   | <u></u>   | 锁定按键                    |     |
|   | ø         | 关闭蜂鸣                    |     |
|   |           | 可使用 SD 卡                |     |
|   |           | SD 卡记录中                 |     |
|   |           | SD 卡中可记录容量不足            |     |
|   |           | SD 卡连接失败                |     |
|   |           | 可记录到内存。未插入 SD 卡的状态中开始记录 |     |
|   |           | 内存记录中                   |     |
|   |           | 内存中可记录的容量不足             |     |
|   |           | 记录待机状态                  |     |
|   | OREC      | 测试值记录中                  |     |
|   | FULL      | 记录对象的媒介体已满              |     |
|   | Ø         | 可使用 USB                 |     |
|   | 8         | 可使用蓝牙                   |     |

## 3.3 画面的表示记号

| V*1              | 相电压                | VL*1             | 线间电压                              | A               | 电流       |  |
|------------------|--------------------|------------------|-----------------------------------|-----------------|----------|--|
| Р                | 有功 + 消耗<br>电力 - 再生 | Q                | 无功 + 滞后<br>电力 - 超前                | S               | 视在电力     |  |
| PF               | 功率 + 滞后<br>- 超前    | f                | 频率                                |                 |          |  |
| DC1              | 模拟输入 1 通道的电压       | DC2              | 模拟输入2通道的电压                        |                 |          |  |
| An* <sup>2</sup> | 中性线电流              | PA* <sup>3</sup> | +     滞后       相位角     -       超前 | C* <sup>3</sup> | 进相电容量    |  |
| WP+              | 有功电量 (消耗)          | WS+              | 视在电量(消耗)                          | WQi+            | 无功电量(滞后) |  |
| WP-              | 有功电量 (再生)          | WS-              | 视在电量 (再生)                         | WQc+            | 无功电量(超前) |  |
| THD              | 电压/电流失真率           |                  |                                   |                 |          |  |
| Pst<br>(1 分钟)    | 1 分钟电压闪变           | Pst              | 短期电压闪变                            | Plt             | 长期电压闪变   |  |

※1 W 画面:选择接线 3P4W 时,可自定义显示 V 和 VL

※2 W 画面: An 仅在选择 3P4W 接线时显示。

※3W画面: PA和C可显示自定义。

## 3.4 背光灯和对比调整

背光灯点亮时,长按" 🔅" LCD 键 2 秒以上可调整背光灯的亮度和显示的对比。画面上显示滑动条。可操 作光标键移动滑动条进行调整。调整后按 ENTER 确认键确定。与滑动条无关的调整完成后再次按 ESC 键或 LCD 键结束。











Putting Input terminal plate on the Input terminal

## 4 测试前的准备工作

4.1 购买后的准备工作

## 贴上输入端口贴纸

从附件的输入端口贴纸的 6 个种类里选择 1 张配线色的输入端口贴纸。 贴之前请先擦拭干净输入端口部分,确认贴纸的方向后按下图的位置贴上。



端口贴纸

|        | VN | V1/A1 | V2/A2 | V3/A3 | A4 |
|--------|----|-------|-------|-------|----|
| TYPE 1 | 蓝色 | 红色    | 绿色    | 黑色    | 黄色 |
| TYPE 2 | 蓝色 | 茶色    | 黑色    | 灰色    | 黄色 |
| TYPE 3 | 黑色 | 黄色    | 绿色    | 红色    | 白色 |
| TYPE 4 | 蓝色 | 黑色    | 红色    | 白色    | 黄色 |
| TYPE 5 | 白色 | 黑色    | 红色    | 蓝色    | 黄色 |
| TYPE 6 | 黑色 | 红色    | 黄色    | 蓝色    | 白色 |

KEW6315

## 贴上识别标签

电压测试线和钳形传感器的两端分别贴上与输入端口同色的识别标签。 识别标签一共有 8 个颜色共计 32 根(红,蓝,黄,绿,茶色,灰,黑,白)



标签 (共计32 根)



贴在电压测试线的两端

## 4.2 电源

## 电池

本仪器有2种电源方式: AC 电源和电池。

即使由于停电等原因造成 AC 电源停止供应时,可从电源供给切换成电池供给后继续测试。

可使用单3形碱性干电池(LR6)和单3形充电电池(Ni-MH)。

给电池充电时请使用充电电池专用充电器,不能利用仪器本体充电。

※ 单3形碱性干电池(LR6)是附件。

## \land 舱

- 测试中请勿更换电池。
- 请勿混杂使用品牌和种类不正确的电池。
- 虽然使用电池时的电源端口是绝缘的,但是请勿碰触。

## <u>尒</u> 警告

• 更换电池时请取下电源线,电压测试线和传感器,电源设置为 OFF。

▲ 注意

- 请勿将新旧电池混合使用。
- 安装时请注意电池极性方向,请与电池盒内的箭头方向相符合。

购买时没有安装电池,请使用附件的电池。 电源 OFF 时仍然会消耗电池,长期不使用时请取下电池后保存。

AC 电源供电时,电池不会供电。

请注意: 仪器中没有安装电池时, 若使用的 AC 电源停止供电, 将切断仪器电源, 可能会丢失测试中的数据。

画面显示/电池剩余量

### 画面显示/电池剩余量

画面右上角显示电源图标,不同的电源状态变化如下:







| 4.3 SD 卡的插入/取出方法                                                                                                                                                                                                                 | KEW6315                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 4.3 SD 卡的插入/取出方法                                                                                                                                                                                                                 |                                       |
| <b>り</b> 请务必确认以下事项。                                                                                                                                                                                                              |                                       |
| ▲ 注意                                                                                                                                                                                                                             |                                       |
| • 请按"插入方法"的指示以正确的方向将 SD 卡插入本体。方向错误的话可能导致 SD 卡或本体                                                                                                                                                                                 | 受损。                                   |
| • 插入/取出 SD 卡时必须确认 SD 卡没有处于通信中。(通信中 标志闪烁)通信状态中若取;导致保存的数据和本体受损。                                                                                                                                                                    | 出 SD 卡,可能                             |
| • 请勿在记录中( <b>●REC</b> 标志闪烁)取出 SD 卡。可能导致保存的数据和本体受损。请在记                                                                                                                                                                            | 录终了后等"记                               |
| 录停止"的信息消失后取出 SD 卡。                                                                                                                                                                                                               |                                       |
| <ul> <li>注记:</li> <li>使用新 SD 卡时,请在本体上格式化。若在 PC 上格式化的话可能无法正确记录数据。详情请参考</li> <li>频繁使用的 SD 卡和长期使用的 SD 卡,由于闪存的使用寿命,可能无法记录数据。此时,请使无法记录数据的旧卡。</li> <li>SD 卡的记录数据可能会由于故障等原因丢失或变化。请将记录数据定期备份后保存。并且,不可的原因和内容是什么,我们都无法保证。请务必了解。</li> </ul> | *格式化"(P86)。<br>用新的 SD 卡更换<br>管数据丢失或变化 |

插入方法: 1

打开端口盖。

2 确认 SD 卡方向,表面向上按如图所示的箭头方向完全插入端口。

3 关上端口盖。如非必须,请关闭端口盖后使用。

## 取出方法:

- 打开端口盖。 1
- 2 向内按 SD 卡, SD 卡弹出成可取出状态。
- 3 捏住 SD 卡拔出。
- 4 关上端口盖。如非必须,请关闭端口盖后使用。



端口盖
4.4 电压测试线和钳形传感器的连接

## 4.4 电压测试线和钳形传感器的连接

请务必确认以下事项。

### <u> \_</u> 危险

- 请使用本仪器提供的专用电压测试线。
- 请使用仪器专用传感器,并确保测试电流与额定标准一致。
- 请勿连接任何与测试无关的电压测试线和钳形传感器。
- 测试前,请将测试线和传感器与仪器连结后再与测试回路相连。
- 在测试期间(测试线为通电状态),切勿将测试线和传感器从仪器上取下。

# ▲ 警告

- 请确认仪器电源为 OFF 后连接电压测试线和钳形传感器。
- 必须先连接仪器,请将测试线和传感器完全插入仪器。
- 测试中,若仪器外壳破裂或有暴露的金属部分请立刻停止测试。

请按以下顺序连接电压测试线和钳形传感器。

- 1 确认本体没有接通电源。
- 2 测试需要使用的电压测试线连接本体的交流电压输入端口。
- **3** 测试需要使用的钳形传感器连接本体的电流输入端口。此时,传感器的输入端口的箭头标志和本 体的电流输入端口的箭头方向必须一致。



KEW6315





- 36 -

| 记录开始         |                                                                                                                           | KEW6315 |
|--------------|---------------------------------------------------------------------------------------------------------------------------|---------|
| 4.6 记录顺序     |                                                                                                                           |         |
| 开始记录         |                                                                                                                           |         |
| 按 (START) 键。 | Guide     Image: 2013/02/04       Start recording       Quick start guide       Start now       [ESC]:CANCEL   [ENTER]:OK |         |

记录的开始方法可从"快速开始向导"和"立刻开始记录"中选择。"快速开始向导"中按画面指示依次设定项目,完成记录所必须的设定后可简单地开始记录。但是,"快速开始向导"中设定的项目仅仅是关于接线盒记录 设定的内容。如需进行其他设定,请从 SETUP 开始设定。记录所必须的设定已经完成或无需变更设定时请选择"立刻开始记录",按当前的设定立刻开始记录。测试前请进行"安全确认"和"测试准备工作"。



可显示关于记录的信息和终止记录。

| 画面显示项目 |          |                             |  |  |
|--------|----------|-----------------------------|--|--|
| 记录数据号码 | 显示记录数据的  | 识别号码,作为保存测试数据的文件名使用。        |  |  |
| 经过时间   | 显示记录开始所能 | 示记录开始所经过的时间。                |  |  |
|        | 手动       | 显示"记录开始时间"。                 |  |  |
| 记录开始方法 | 连续记录     | 显示"记录开始时间"/"记录结束时间"。        |  |  |
|        | 指定时间带    | 显示"记录开始时间"/"记录期间"/"记录结束时间"。 |  |  |
| 记录位置   | 显示所记录的测  | 试数据的保存对象。                   |  |  |
| 记录项目   | 显示记录的测试  | 项目。                         |  |  |

◄())

"取消"和"停止"项目的移动。→ ENTER 确认。 ESC 取消。





5003 mA -0 mV Trend Customize

An: DC2: mV -0

Zoom

DC1 Wh



(4)(5) 测试环境检测

画面切换

#### 测试环境检测

选择"<mark>开始测试</mark>"时,检测测试环境,显示其判 它结果

定结果。



使用"快速开始向导"开始记录

接线确认

显示确认项目的判定结果。

\* 在功率非常差的测试现场中,即使接线正确,也可能 判定为 NG。



自我诊断

确认本体系统的工作状态,显示判定结果。

| Guide           |            | -    | 19:43:08 |
|-----------------|------------|------|----------|
| SCheck the test | environmen | t.   |          |
| R               | esult      |      | 100      |
| 1. RTC          | OK         | -    |          |
| 2. Flash Memo   | ry OK      |      |          |
| 3 . SRAM        | OK         |      | _        |
| 4. FPGA         | OK         |      |          |
| 5. Bluetooth.   |            | -    |          |
| 6. SD Card      | OK         |      |          |
|                 | [ENTER]:0  | LOSE | _        |
| 0 0 0 0 0       | 0 0        | (8)  | 0 0      |

传感器识别

自动识别所连接的电流传感器,设定最大量程。

-

| Guide  |            |        | •      | 2013/07/23<br>20:28:57 |
|--------|------------|--------|--------|------------------------|
| ⑤Check | the test e | nviron | ment.  |                        |
|        | Re         | sult   |        |                        |
| 1ch    | 8125:MAX 5 | 00A,   | Ф40mm  |                        |
| 2ch    | 8125:MAX 5 | 600A,  | Ф40mm  |                        |
| 3ch    | 8125:MAX 5 | 600A,  | Ф40mm  |                        |
|        |            |        |        |                        |
|        |            | [ENTER | ?]:CLC | DSE                    |
| 0/0/   | 3/0/5      | 0)     | ) (C   | )/0/0                  |

#### 使用"快速开始向导"开始记录

#### NG 判定

接线确认



关闭判定结果后 NG 的值和矢量线会闪烁。若全部 OK,作为参考, 只显示如左下图的以接线设定为基准的理想矢量图。

### 接线确认的合格判定标准及原因

| 确认事项   | 合格判定基准                                                                   | 原因                                                                                                |
|--------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 频率     | V1 的频率为 40 - 70Hz.                                                       | <ul><li>电压夹子是否完全连接在被测物上?</li><li>谐波成分是否不大?</li></ul>                                              |
| 交流电压输入 | 交流电压输入为(标称电压 x VT)的 10%以上.                                               | <ul> <li>电压夹子是否完全连接在被测物上?</li> <li>电压用测试线是否正常插入本仪器的交流电压输入端口?</li> </ul>                           |
| 电压平衡   | 交流电压输入在基准电压(V1)<br>的±20% 以内.<br>* (不判定单相接线)                              | <ul> <li>测试线的接线方式与设定是否吻合?</li> <li>电压夹子是否完全连接在被测物上?</li> <li>电压用测试线是否正常插入本仪器的交流电压输入端口?</li> </ul> |
| 电压相位   | 交流电压输入的相位在基准值<br>(正确矢量)的±10°以内                                           | - 电压线的连接对象是否错误?<br>(连接通道是否错误?)                                                                    |
| 电流输入   | 电流输入在(电流量程 x<br>CT)5% 以上,110%以下                                          | <ul> <li>- 传感器是否完全插入本仪器的交流电力输入端口?</li> <li>- 电流量程的设定对于输入等级来说是否过大或过小?</li> </ul>                   |
| 电流相位   | <ul> <li>各通道的功率(PF, 绝对值)<br/>在 0.5 以上</li> <li>各通道的有功电力(P)为正数</li> </ul> | <ul> <li>- 传感器的电流方向标志是否为"电源→负荷"方向?</li> <li>- 传感器的连接对象是否有错误?</li> </ul>                           |

#### 自我诊断

若频繁显示 NG 时,可能是仪器本体发生故障。请立刻停止使用,参考 11 章 疑似故障(P157)。



传感器识别

判定为 NG 时,红字显示电流传感器的种类。

|     | Re       | sult   |          | Check | Result         | initerie i |
|-----|----------|--------|----------|-------|----------------|------------|
| 1ch | 8125:MAX | 500A,  | 040mm    | 1ch   | ????           | NG         |
| 2ch | 8128:MAX | 50A,   | Φ24mm    | 2ch   | 8125:MAX 500A, | Φ40mm      |
| 3ch | 8125:MAX | 500A,  | Ф40mm    | 3ch   | 8125:MAX 500A, | Ф40mm      |
|     |          | [ENTER | R]:CLOSE |       | [ENTE          | R1:CLOSE   |

#### 识别为 NG 的原因

| 确认事项                 | 原因                                                                                                                                                                                                                           |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 电流传感器的种类             | - 是否在各通道上连接不同种类的电流传感器?<br>请测试中使用同种的电流传感器。                                                                                                                                                                                    |
| <b>???</b><br>(不能识别) | <ul> <li>电流传感器是否完全连接本体?</li> <li>疑似故障:<br/>请将识别为 NG 的电流传感器的连接通道变更为被正确识别的通道后再次进行测试。此时,若是与上次使用同样的通道而被识别为 NG,可能是本体发生故障。<br/>连接了上次被识别为 NG 的电流传感器的通道仍然被识别为 NG 时,则可能是电流传感器发生故障。如怀疑发生故障时,请立刻停止使用。参考 11 章疑似故障<br/>(P157)。</li> </ul> |

### (8)(9) 每个开始方法的设定

指定日期和时间,可开始记录。

| (8) 指定时间:    | <b></b>                               |
|--------------|---------------------------------------|
| Guide        | □ <del>•</del> 2013/07/04<br>20:02:37 |
| Set a record | ling time.                            |
|              |                                       |
| REC Start    | 2013/08/02 08:00                      |
| REC End      | 2013/08/07 18:00                      |
|              | Next                                  |
|              |                                       |
|              |                                       |
|              |                                       |
| [ESC]:BACK   | LENIER]:OK                            |

按设定的开始时间到完成时间之间的间隔时间进行记录。 例:如显示的设定情况,按下列的时间期间进行记录。 2013年8月2日8点~2013年8月7日18点



按设定的时间带之间的间隔时间记录,在此设定期间反复进行。

例:如显示的设定情况,按下列的(i)~(viii)的时间带进行记录。18 点到次日 8 点间不记录。

- (i) 2013年8月1日的8点~18点,
- (ii) 2013年8月2日的8点~18点,
- (iii) 2013年8月3日的8点~18点,
- (iv) 2013年8月4日的8点~18点,
- (v) 2013年8月5日的8点~18点,
- (vi) 2013年8月6日的8点~18点,
- (vii) 2013年8月7日的8点~18点
- (viii) 2013年8月8日的8点~18点.

#### 项目选择

| Guide           |                         | - 2013/02/04<br>22:50:30 |
|-----------------|-------------------------|--------------------------|
| Start recording |                         |                          |
|                 |                         |                          |
|                 |                         |                          |
| Quick st        | art <mark>guid</mark> e |                          |
| Star            | t now                   | -21                      |
|                 |                         |                          |
|                 |                         |                          |
|                 |                         |                          |
| [ESC]:CANCEL    | [EN                     | ITER1:0K                 |

蓝色字体的显示项目(未选择),或<mark>蓝色背景白色字体</mark>的项目(选择 中)都是使用光标键可移动到的项目。记录开始的左侧画面中按上下 光标键选择记录开始的方法,按确认键(ENTER)确定。与选择无 关的开始向导结束后请按返回键(ESC)。

2013/08/12 Guide ②Select the wiring system to be tested 1P2W-1 1D7W\_1 3P3W-1 1P2W-1 1P3W-2 3P3W-2 1P2W-3 P3W3/ 1P2W-3P4W 0 2 3 4 5 6 7 8 9 [ESC]:BACK [ENTER]:OK

**选择项目** 纵横显示的画面中使用上下左右的光标键可进行项目移动。选择接线的左侧画面中,按上下左右光标键选择测试对象的接线,按确认键(ENTER)确定。如需返回与选择无关的前个面面时请使用返回键(ESC)。

| Guide                   | □ - <sup>2013/07/12</sup><br>11:45:58 |
|-------------------------|---------------------------------------|
|                         | ding period.                          |
| REC Time<br>REC Period  | 2013/07/12 12:00                      |
| ① ② ③ ) ④<br>[ESC]:BACK | 5 6 0 8 9 6<br>[ENTER]:0K             |

输入日期/时间之类的数值时移动左右光标键变更需要的位数,使用 上下光标键选择数值。在选择记录时间的左侧画面中,按左右光标键 选择日期的位数,此时,可操作上下光标键一个个选择数值。确认所 做变更时请按确认键(ENTER)。如需返回与数值无关的前个画面请 按返回键(ESC)。

#### 设定的注意事项:

电流量程设定为"自动"时①记录项目的设定中只能选择"电力+谐波""电力"。如需记录电能质量,请将电流量 程变更为固定量程后进行。"快速开始向导"中只设定接线和记录设定相关内容。基本设定所包含的公称电压,公 称频率,测试设定所包含的电能质量事件的界限值,闪变测试的滤波系数(斜坡)等必须事先设定好。这些设定请 从 (SET UP) 开始进行。并且,"+ 传感器"可选件钳形传感器的设定必须强制设定为"无"。





#### 接线设定

## 接线设定

| SET UP           | 🗖 🗓 🤫    | 06/01/2014<br>15:23:22 |  |
|------------------|----------|------------------------|--|
| Rasic Moas       | Roc Save | Athers                 |  |
| Wiring           |          |                        |  |
| Wiring           | 3P4W     |                        |  |
| +Clamp           | +1A      |                        |  |
| Voltage          |          |                        |  |
| V Range          | 600V     |                        |  |
| VT Ratio         | 1.00     |                        |  |
| Nominal V        | 100V     |                        |  |
| Current          | 1,2,3ch  | 4ch                    |  |
| Clamp            | 8125     | 8125                   |  |
|                  | F00 0 A  | E00 0 4                |  |
| Diagram 👌 Detect |          |                        |  |
| F1               |          |                        |  |

### "基本接线"

在与测试对象的接线相符的 10 种接线方式中选择 1 个。





#### 接线

# 接线

**1** 请确认。

## ⚠<sub>危险</sub>

- 本产品符合测试种类的标准,请勿在 CAT.IV/AC300V, CAT.III/AC600V, CAT.II/AC1000V 以上高压回路 中使用。
- 请使用本产品专用的电压测试线和钳形传感器。
- 请务必先将钳形传感器,电压测试线,电源线连接本体后再连接测试物和电源。
- 测试线和本体的测试种类不符时请优先选择较低的测试种类。请务必确认测试电压和额定电压一致。
- 绝对不能连接测试中不需要的电压测试线和钳形传感器。
- 钳形传感器必须连接在断路器的2次回路中,1次回路的电流量过大会造成危险。
- 请注意通电中 CT 的 2 次回路不能开路。万一处于开路状态, 2 次回路会产生高压造成危险。
- 请注意接线时电压测试线的金属头部与电源线不能短路。 并且,不能接触金属头部。
- 钳形传感器的夹钳头部没有采用不会与被测物短路的设计,测试未绝缘导线时请注意避免夹钳与被测物的 短路。
- 测试时,手指不能超过保护栏。
   保护栏:为避免操作中的触电事故,确保最低限度所需要的沿面及空间距离的刻印。
- 测试中(测试线通电),请勿从本体上取下测试线。
- 打开夹钳时,金属部分请勿接触测试线的2线间。

# ▲警告

- 为避免触电, 短路事故, 如需接触前请先切断测试线电源。
- 请勿碰触电压测试线的金属头部。



#### 电压测试的设定

#### KEW6315

## 电压测试的设定

| SET UP |           |        |       | - 1   | 06/01/201<br>16:28:42 | 4 |
|--------|-----------|--------|-------|-------|-----------------------|---|
| Bas    | ic        | Meas.  | Rec.  | Save  | Others                |   |
| Wiring |           |        |       |       |                       |   |
|        | Wiri      | ng     |       | 3P4   | N                     |   |
|        | +(lamn    |        |       | ±14   |                       |   |
| Voltag | e         |        |       |       |                       | Ν |
|        | V Range   |        | 600V  |       |                       |   |
|        | VT Ratio  |        | 1.00  |       |                       |   |
|        | Nominal V |        |       | 100   | V                     |   |
| curren | ι         |        | 1,2   | , sen | 4CN                   |   |
|        | Clam      | р      | 81    | 25    | 8125                  |   |
| 1      |           |        | F 0.0 | • •   | F00 0 4               | - |
| Defaul | lt        | Detect |       |       |                       |   |
| F1     |           |        |       |       |                       |   |

### "电压量程"

选择所使用的电压量程。

\*进行符合电力品质国际规格 IEC61000-4-30 S 等级的测试时请选择"600V"量程。



### VT/CT\*

\* "电流测试的设定"中的设定项目

## ⚠危险

- 请勿在测试种类标准的 300V AC for CAT. IV, 600V AC for CAT. III, 1000V AC for CAT. II 以上电压的回路 中测试。
- 电源线必须连接插座。请勿接触 AC240V 以上的回路。
- 本仪器必须在 VT (变压器), CT (变流器)的 2 次回路。
- 请注意通电时 CT 的二次回路不能开路。万一处于开路状态,在二次回路中会产生高压造成危险。

## ⚠注意

• 本仪器不保证在使用 VT,CT 测试时的精确度。使用 VT,CT 时,本仪器的精确度请参考 VT,CT 精确度以及 相位特性等。

测试线的电压或者电流值超过本仪器的最大测量范围时,此时,如下所示,使用与测试线的电压值、电流值相符的VT、CT,在二次回路中测试,但可显示一次回路的值。





## 电流测试的设定

| SET UP    |           | 🗖 🗓 🚽     | 06/01/2014<br>15:23:53 |  |
|-----------|-----------|-----------|------------------------|--|
| Bas       | sic Meas. | Rec. Save | Others                 |  |
| VI Kdt10  |           | 1001      |                        |  |
| Curren    | t         | 1,2,3ch   | 4ch                    |  |
|           | Clamp     | 8125      | 8125                   |  |
|           | A Range   | 500.0 A   | 500.0 A                |  |
|           | CT Ratio  | 1.00      | 1.00                   |  |
| UL        |           |           |                        |  |
| DC Range  |           | 1000mV    |                        |  |
| Frequency |           |           |                        |  |
| Nominal f |           | 50Hz      |                        |  |
|           | Setect    |           |                        |  |
|           | F2        |           |                        |  |

## "钳形": 电流测试用的钳形传感器

选择所使用的钳形传感器。"+传感器"中选择可选件的传感器时仅限于 4 通道,可选择与连接测试接线对象的传感器不同种类的传感器。移动到显示的下拉菜单状态中所选择的传感器,各传感器的额定电流和被测导体直径会弹出显示。





## 外部输入端口/基准频率的设定

| SET UP         |           | 🗖 🗓 🚽     | ■ 06/01/20<br>15:23: | 014<br>53 |
|----------------|-----------|-----------|----------------------|-----------|
| Bas            | ic Meas.  | Rec. Save | Others               |           |
|                | VI Katio  | שש.ו      |                      |           |
|                | Nominal V | 100V      |                      |           |
| Curren         | t         | 1,2,3ch   | 4ch                  |           |
|                | Clamp     | 8125      | 8125                 |           |
|                | A Range   | 500.0 A   | 500.0 A              |           |
|                | (T Ratio  | 1 00      | 1 00                 |           |
| DC Bange       |           | 1000mV    |                      |           |
| Freque         | ncy       |           |                      |           |
| Nominal f 50Hz |           | Z         | IJ                   |           |
|                | 😵 Detect  |           |                      |           |

## "DC 量程"

按输入的直流电压信号选择 DC 量程。



### "频率"

设定测试对象的公称频率。若遇到像停电时那样无法特定电压频率的情况下,按设定的公称频率为基准进行测试。



| <u>5.3 测试设定</u> |                             |                                                | KEW6315 |
|-----------------|-----------------------------|------------------------------------------------|---------|
| 5.3 测试设定        |                             |                                                |         |
| 按 SET UP 键 🔶 🔍  | 移动到"测试设定"                   | " 栏                                            |         |
|                 | SET UP<br>Basic Measurement | □ 0 - 06/01/20<br>15:24:39<br>Rec. Save Others | 4       |
|                 | Demanu                      | ZOmin                                          |         |
|                 | Inspection                  | 10min.                                         |         |
|                 | Target                      | 100.0kW                                        |         |
|                 | Harmonics                   |                                                |         |
|                 | THD calc.                   | THD-F                                          |         |
|                 | MAX hold                    | ON                                             |         |
|                 | Edit allowable range.       |                                                |         |
|                 | Power quality               | F 0.                                           |         |
|                 |                             |                                                |         |

## 需求测试的设定



## "测试周期"

选择无需求测试或记录测试时间内的 1 次需求测试时间。开始需求测试后,决定每个"测试周期"的需求值并记录。进行需求测试时,间隔时间只能设置为以下时间。请注意:在设定其他间隔时间的状态下设定"测试周期"的话,自动将间隔时间调整为与"测试周期"相同的设定。

可设定的间隔时间: 1 秒, 2 秒, 5 秒, 10 秒, 15 秒, 20 秒, 30 秒, 1 分钟, 2 分钟, 5 分钟, 10 分钟, \*15 分钟, \*30 分钟





#### 需求测试的设定

#### KEW6315

### "判定周期"

选择需求测试中预测值超过目标值时蜂鸣警告的周期(时间)。判定周期不能设定比测试周期长的时间。按测试 周期设定可选择的判定周期如下:



#### 需求测试

#### KEW6315

### 需求测试

通常 **30** 分钟内(测试周期)的平均电力称为需求值。由于工厂等的契约电力是由此需求决定的,若需求值太大则可能导致电费上升。为了控制需求,以下列举例进行说明。

假设,想要将最大需求控制在 500kW(目标值)时,由于测试周期 1 的需求值为 500kW,没有问题,测试周期 2 的前半段的 15 分钟内消耗了 600 kW 的电力。此时,将后半段的 15 分钟的电力控制在 400kW,那么,测试周期 2 也和测试周期 1 一样,可将需求控制 500kW。

并且,测试周期2的电力消耗在前半段的15分钟为1000kW,后半段的15分钟为无负荷(0kW)的话,也同样为500kW。此外,如果判定周期设定为15分钟的话,在测试周期2的前半段15分钟的位置上就会蜂鸣警告。



#### 谐波分析的设定

## 谐波分析的设定

| SET UP                |              | □ - 06/01/2014<br>16:35:16 |  |
|-----------------------|--------------|----------------------------|--|
| Basic                 | Measurement  | Rec. Save Others           |  |
| Demand                |              |                            |  |
|                       | Measurement  | 30min.                     |  |
|                       | Inspection   | 10min.                     |  |
|                       | Target       | 100 ALW                    |  |
| Harmor                | ics          |                            |  |
|                       | THD calc.    | THD-F                      |  |
|                       | MAX hold     | ON                         |  |
| Edit allowable range. |              |                            |  |
| Power quality         |              |                            |  |
|                       |              |                            |  |
|                       | Illustenseis | F0.                        |  |

## "THD 计算方法"

选择 THD :综合谐波失真率的计算方法。以基本波为基准的综合谐波失真率为" THD-F ",全有效值为基准的综合谐波失真率为" THD-R "。



### "编辑允许值范围"

每次设定谐波相关的电磁两立性(EMC)等级的允许值范围(含有率)。 设定的允许值范围在谐波图表上以 条形图显示。



电能质量(事件)界限值的设定

电能质量 (事件)界限值的设定

| SET UP        |             | G6/01/2014     16:36:12     16:36:12 |  |
|---------------|-------------|--------------------------------------|--|
| Basic         | Measurement | Rec. Save Others                     |  |
|               | MAX hold    | ON                                   |  |
|               | Edit all    | lowable range                        |  |
| Power         | quality     |                                      |  |
|               | Hysteresis  | 5%                                   |  |
|               | Transient   | 300 Vpeak                            |  |
|               | SWELL       | 110%(110.0 V)                        |  |
|               | DIP         | 90%( 90.0 V)                         |  |
| INT           |             | OFF                                  |  |
| InrushCurrent |             | I OFF                                |  |
|               |             |                                      |  |
| 0FF           |             |                                      |  |
| F1            |             |                                      |  |

(OFF/ON) 键进入各种的事件 "界限值"的可输入状态。即使已设定了 "界限值",如果在 OFF 状态也不会判定事件。再次 ON 以后,显示上次设定的 "界限值"。

### 界限值设定的注意事项

请注意:"上升","下降","瞬停"的界限值是按公称电压所对应的百分比%进行设定,如果变更公称电压的设定, 界限值的电压也会变动。"瞬变"是在变更公称电压后将变更后公称电压的3倍峰值电压(300%)设定为默认值。 "突入电流"是按电流量程所对应的百分比%进行设定,如果变更电流量程的设定,界限值的电流也会变动。

### "滞后"

将不判定事件的测试领域设定界限值对应的%数值。设定适合的滞后值可以防止因界限值附近的电压变动/电 流变动引起的不必要的事件判定。



KEW6315







## 闪变的滤波系数的设定

| SET UP                  |               |                                         | 2014/02/24 |  |
|-------------------------|---------------|-----------------------------------------|------------|--|
| Basic                   | Measurement   | Rec. Sav                                | e Others   |  |
|                         | 11930010313   | J.                                      | U          |  |
|                         | Transient     | 600 \                                   | /peak      |  |
|                         | SWELL         | SWELL 110%(220.0 V)<br>DIP 90%(180.0 V) |            |  |
|                         | DIP           |                                         |            |  |
|                         | INT           | OFI                                     |            |  |
|                         | ToruchCurront | 000                                     |            |  |
| Flicker                 |               |                                         |            |  |
|                         | Filter        | 230                                     | ٧          |  |
| Lapacitance calculation |               |                                         |            |  |
| -                       | Target PF     | 1.00                                    | 00         |  |
|                         |               |                                         |            |  |

## "滤波系数"

选择公称电压为基准的滤波系数。为了能争取测试闪变,必须正确设定与实际的测试对象相符的公称电压值, 公称频率,滤波系数。如果可能的话,请将公称电压值与滤波系数设定为相同电压。



进相电容的目标功率值的设定

#### KEW63

# 进相电容的目标功率值的设定

| SET UP                  |                   |                  |         | 2014/02/2 | 24<br>5 |
|-------------------------|-------------------|------------------|---------|-----------|---------|
| Basic                   | Measurement       | Rec.             | Save    | Others    |         |
|                         | 11930010313       |                  | 3.0     |           | ٦       |
|                         | Transient         |                  | 600 Vp  | beak      |         |
|                         | SWELL             | 110              | )%(220. | .0V)      |         |
|                         | DIP               | DIP 90%(180.0 V) |         |           |         |
|                         | INT OFF           |                  |         |           |         |
|                         | InrushCurrent OFF |                  |         |           |         |
| Flicker                 |                   |                  |         |           |         |
| Filter 230V             |                   |                  |         |           |         |
| Capacitance calculation |                   |                  |         | 1         |         |
| Target PF               |                   | 1.000            | )       |           |         |
|                         |                   |                  |         |           |         |

## "目标功率值"

设定进相电容设置后的功率值。与电源连接的设备是马达等诱导性负荷的情况下,由于电流的相位比电压更滞后,功率变得恶化。高压的受电设备中,为了改善该情况,通常会设置进相电容。在低压电力、高压电力、业务用电力等的契约中,若改善了功率有时也可能会节约电费。


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>315</u> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 5.4 记录设定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 按 SET UP 键. → I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| SET UP       Image: Constraint of the second o |            |

记录项目的设定

# 记录项目的设定

| SET UP |             | □ 🗓 🖛 06/01/2014<br>15:26:21 |
|--------|-------------|------------------------------|
| Basic  | Meas. Recor | ding Save Others             |
| REC It | ems         |                              |
|        | Power       | Record                       |
|        | Harmonics   | Record                       |
|        | Event       | Record                       |
| KEC me | chou        |                              |
|        | Interval    | 30min.                       |
|        | Start       | Manual                       |
|        |             |                              |
|        |             |                              |
|        |             |                              |
|        |             |                              |

测试数据可记录到 SD 卡或内存中的时间取决于记录项目数和设定的间隔时间。将不必要的记录项目设定为 "不记录",可延长记录时间。详情请参考"可保存时间"(P. 76)。

## "电力相关"

通常是记录电力的相关测试项目。为了确认正在记录中,会显示"电力相关:记录",因此,不能选择此项目。

### "谐波"

选择是否记录电压、电流、电力的相关谐波测试数据。



## "事件"

选择是否记录电能质量中事件发生时的详细数据。电流量程设定为"AUTO\*" 自动量程时,不能选择记录。 请在电流量程变更为固定量程后选择记录。

\* "AUTO"量程按电力品质国际规格 IEC61000-4-30 Class S 的标准不能测试。



# 记录项目

根据记录方法可记录全部测试通道的以下数据。 记录项目随记录方法,接线方法的不同而不相同。

|        | 记录文件 记录项目         |   | 记录设定 |     |  |  |
|--------|-------------------|---|------|-----|--|--|
| 记求义件   |                   |   | +谐波  | +事件 |  |  |
|        | 电压有效值(线间/相位)      |   |      |     |  |  |
|        | 电流有效值             |   |      |     |  |  |
|        | 有功电力              |   |      |     |  |  |
|        | 无功电力              |   |      |     |  |  |
|        | 视在电力              |   |      |     |  |  |
|        | 功率                |   |      |     |  |  |
|        | 频率                |   |      |     |  |  |
|        | 中性线电流(3P4W)       |   |      |     |  |  |
|        | 电压/电流相位角 (1次)     |   |      |     |  |  |
|        | 模拟输入电压 1CH, 2CH   |   |      |     |  |  |
|        | 电压/电流不平衡率         | • | •    |     |  |  |
| 电力测试数据 | 1 分钟电压闪变          | • | •    | •   |  |  |
|        | 短期电压闪变 (Pst)      |   |      |     |  |  |
|        | 长期电压闪变 (Plt)      |   |      |     |  |  |
|        | 进相电容量             |   |      |     |  |  |
|        | 有功电量 (消耗/再生)      |   |      |     |  |  |
|        | 无功电力 (消耗) 滞后/ 超前  |   |      |     |  |  |
|        | 视在电量 (消耗/再生)      |   |      |     |  |  |
|        | 无功电力 (再生) 滞后/ 超前  |   |      |     |  |  |
|        | 需求值 (W/VA)        |   |      |     |  |  |
|        | 需求目标值(W/VA)       |   |      |     |  |  |
|        | 综合谐波电压失真率(F/R)    |   |      |     |  |  |
|        | 综合谐波电流失真率(F/R)    |   |      |     |  |  |
|        | 谐波电压/电流(1-50 次)   |   |      |     |  |  |
|        | 电压/电流相位角 (1-50 次) |   | •    |     |  |  |
| 谐波测试数据 | 电压电流相位差(1-50次)    |   | -    |     |  |  |
|        | 谐波电力 (1-50 次)     |   |      |     |  |  |
| 电压/电流变 | 每半周期的电压有效值        |   |      | •   |  |  |
| 动数据    | 每半周期的电流有效值        |   |      |     |  |  |
|        | 事件检出日期和时间         |   |      | _   |  |  |
| 事件种类数据 | 事件种类              |   |      | •   |  |  |
|        | 事件检出时的测试值         |   |      |     |  |  |
| 波形数据   | 电压/电流波形           |   |      | •   |  |  |

## KEW6315 记录方法的设定 记录方法的设定 - 06/01/2014 16:37:20 SET UP Save Others Basic Meas. Recording REC Items Power Record Harmonics Record Luc m h **REC** method Interval 30min. Start Manual Endless rec. Time period rec. "间隔时间" 选择将测试数据记录到 SD 卡或内存的时间的间隔。可设定的间隔时间为 17 种。但是,已经设定了需求测试的 "测试周期"的情况下,无法设定比它更长的间隔时间。请将需求测试的测试周期变更为"无测试"后选择。请 注意:即使先设定间隔时间,也会自动变更为与测试周期相同的设定。详情请参考"需求的设定"(P.59)。 设定内容 1 秒/2 秒/5 秒/10 秒/15 秒/20 秒/30 秒/ 1 分钟/2分钟/5分钟/10分钟/15分钟/20分钟/30分钟/ 1 小时/2小时/150,180 个周期 (约3秒) 为默认值。 \* 150,180 个周期 (约3秒)是电力品质国际规格 IEC61000-4-30. 指定的间隔时间。50Hz 的公称频率是 150 个 周期,60Hz的公称频率是180个周期。 ENTER 移动到"**间隔时间**"项目. 显示选择窗口 ◀() )|||• (ENTER) 确认. ESC 取消. 输入记录间隔时间



## "指定时间带"

设定记录开始的时间和结束的时间,设定此记录期间内的每天所记录的共通的时间带。按间隔时间记录所设定的 记录期间每天的记录时间带的数据。详情请参考"(8)/ (9) 每个开始方法的设定" (P. 45)。

| 设定项   | 页目    | 设定内容                                       |
|-------|-------|--------------------------------------------|
| 记录期间  | 开始-结束 | 年/月/日 (DD/ MM/ YYYY) - 年/月/日(DD/ MM/ YYYY) |
| 记录时间带 | 开始-结束 | 时:分 (hh:mm) - 时:分(hh:mm)                   |



## 可保存时间

使用 2GB 的 SD 卡时可记录时间的标准:

|      | 记录项目   |            |       | 记录    | 专项目          |
|------|--------|------------|-------|-------|--------------|
| 间隔时间 | 电力相关   | + 谐波       | 间隔时间  | 电力相关  | + 谐波         |
| 1 秒  | 13 天   | 3天         | 1 分钟  | 1 年以上 | 3个月          |
| 2 秒  | 15 天   | 3天         | 2分钟   | 2年以上  | 6个月          |
| 5秒   | 38 天   | 7天         | 5分钟   | 6年以上  | 1年以上         |
| 10 秒 | 2.5 个月 | 15 天       | 10 分钟 |       | <b>2</b> 年以上 |
| 15 秒 | 3.5 个月 | 23 天       | 15 分钟 |       | 3年以上         |
| 20 秒 | 5个月    | 1个月        | 20 分钟 |       | 5年以上         |
| 30 秒 | 7.5 个月 | 1.5 个月     | 30 分钟 | 10年以上 | 7年以上         |
|      |        |            | 1 小时  |       | 40 左下1       |
|      |        |            | 2 小时  |       | 10年以上        |
|      |        | 150/180 周期 | 23 天  | 4天    |              |

\* 上述内容不包括电能质量的事件数据。设定事件的记录时,按发生量减少可记录的剩余时间。1 次的记录开始 /结束可保存的事件数据最大为 1GB。

\*本仪器可使用的 SD 卡仅限于本公司提供的附件和可选件的 SD 卡。



## "日期形式"

选择日期的表示形式。画面的右上角显示的现在日期,记录开始结束的日期显示和设定输入形式等可全部变更。







## "背光灯"

选择在持续无操作状态时自动关闭背光灯或不关闭背光灯。使用干电池时,为了节约电池用量,不能选择"不自动关闭背光灯"。

| 动大团育                | 光灯 ~。                    |                               |
|---------------------|--------------------------|-------------------------------|
|                     | 设定对象                     | 设定内容                          |
|                     | AC 电源                    | 5 分钟后 OFF. / 不自动 OFF          |
|                     | 干电池                      | 2 分钟后 OFF.                    |
| I                   |                          | * 为默认值。                       |
|                     |                          |                               |
| ▲<br>●<br>移动到"<br>▲ | <b>背光灯</b> "项目. —> enter | 显示下拉菜单 →                      |
| ₩ 供料白               | 动光闭碧夹灯 / 天白动光的           | 田寺 we wat Lesc 町 池            |
| _ 近伴日               | 幼天内自九月 / 小日幼天内           |                               |
|                     |                          |                               |
|                     |                          |                               |
| "系统                 | 重置"                      |                               |
| 除了环境                | <br>设定 "语言", "日期形式"      | "通道配色"和"现在时间"之外的设定初始化为出货时的状态。 |
|                     |                          |                               |
| ● 移                 | 动到" <b>系统重置</b> "项目. ➡   | ENTER 显示确认提示                  |
|                     | 【▶ 选择"是"或" 召             | r "→ ENTER 确认重置.              |
|                     |                          |                               |
|                     |                          |                               |
|                     |                          |                               |
|                     |                          |                               |
|                     |                          |                               |
|                     |                          |                               |
|                     |                          |                               |
|                     |                          |                               |
|                     |                          |                               |

| KEW6315                                                                                                                                              | 5.6 保存数据  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5.6 保存数据                                                                                                                                             |           |
| 按 SET UP 键 → (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                 |           |
| SET UP<br>Basic Meas. Rec. Saved data<br>REC data<br>Delete data.<br>Transfer data.<br>Format<br>KEW6315 setting<br>Save settings.<br>Read settings. |           |
|                                                                                                                                                      | 乞中 木休中已插λ |

将"■":测试数据,"■":截取画面" and " ": 设定数据"保存到" 4 "SD 卡或" ■" 内存中。本体中已插入 SD 卡时,自动将数据记录到 SD 卡内。若想要将数据记录到内存中时请勿插入 SD 卡。记录位置不能用本体设定等进行选择。

数据的记录位置建议使用 SD 卡。内存中可保存的文件数最多是测试数据 3 个,其他文件 8 个。

# 记录数据的操作



| V | 移动到操作项目 |  |
|---|---------|--|







| 项目       |                      | 显示内容                      |
|----------|----------------------|---------------------------|
| क्रांच   | 合计空间                 | 使用空间+剩余空间                 |
| <u> </u> | 剩余空间                 | 仅剩余空间                     |
| 可计寻时间    | 仅电力                  | 记录项目仅记录电力相关测试时的可记录标准时间    |
| 可记求时间    | 电力+谐波                | 记录项目仅记录电力相关和谐波测试时的可记录标准时间 |
|          | 海山 <del>子 米在</del> 把 | 记录测试完成的次数                 |
| 可保存数量    | 测试数据                 | * 内存记录最大数:3个              |
| *仅内存     | 本体设定/                | 本体设定和截取画面合计的记录次数          |
|          | 截取画面                 | * 内存记录最大数:8个              |

## "返回"

(F1

键可结束输入,返回"保存数据"画面。

| 记录数据的操作 |  |  |
|---------|--|--|
|         |  |  |

## "传送数据"

从一览显示中选择"🜉":内存中记录的"🔤":测试数据," 토":截取画面," 🌚":设定数据后传送到" 🔄"SD 卡。 数据显示并非遵守记录时间的前后顺序。如需了解数据的记录顺序,请确认文件名的右侧显示的记录时间。. 但是,从内存传送到 SD 卡的数据会更新为传送时的日期和时间。滚动条只会在一个画面无法显示全部数据时出 现。



"返回" **F1** <sup>健可结束输入,返回"保存数据"画面。</sup>

## "格式化"

格式化 "<sup>1</sup><sup>2</sup>": SD 卡或 "<sup>1</sup>":内存。数据显示并非遵守记录时间的前后顺序。如需了解数据的记录顺序,请确 认文件名的右侧显示的记录时间。但是,从内存传送到 SD 卡的数据会更新为传送时的日期和时间。滚动条只 会在一个画面无法显示全部数据时出现。



# 保存数据的种类

# **9** 关于数据处理

文件名按文件号加算后自动生成。加算后的文件号即使在电源关闭后也能保存在本体的记忆中。因此,即使 变更记录位置而重置系统,也会继续加算到最大计数为止。

若在记录位置上保存了与所保存文件号的文件名相同名字的文件,文件夹中的文件会自动加算下一个文件号 后生成新的文件名后保存。但是,"截取画面"和"本体设定"的文件则会将相同文件名的数据覆盖保存。将 系统重启后文件号从零开始的情况和多个本体使用同一个 SD 卡的情况下,请注意文件名不要有重复。但是, 请注意: 若在记录位置上保存了所有文件号的文件名以及 9999 个种类的话, 文件夹中的文件也会被覆盖。 如果使用电脑等删除文件以及变更保存的文件夹名或文件名,则在本体上的数据操作和解析用 PC 软件的解 析将不能进行。请不要变更文件夹名和文件名。

### "截取画面"



键可记录 BMP 数据。



KEW6315

#### <u>KEW6315</u>

# "数据文件夹"

每1次测试依次作成记录间隔数据,电能质量数据的文件夹。

|        | 文件夹名:       | /KEW | /<br>S:SD<br>M:内有 | <b>S</b><br> <br>保存位置编码<br>卡<br>存 | Щ         | 0<br>数:<br>(000 | 0000<br> <br>据 No.<br>0-9999) |      |
|--------|-------------|------|-------------------|-----------------------------------|-----------|-----------------|-------------------------------|------|
| "间隔数据" |             |      |                   |                                   |           |                 |                               |      |
|        | 本体设定数据      | 文作   | 牛名                | SUP                               | S         |                 | 0000                          | .KEW |
|        | 测试设定数据      |      |                   | INI                               | S         |                 | 0000                          | .KEW |
|        | 电力测试数据      |      |                   | INP                               | S         |                 | 0000                          | .KEW |
|        | 谐波测试数据      |      |                   | INH                               | S         |                 | 0000                          | .KEW |
|        |             |      |                   |                                   |           |                 |                               | -    |
|        |             |      |                   | 保存(<br>S:SD 卡<br>M:内存             | 立置编码      |                 | 数据 No.<br>(0000-9999)         |      |
| "电能质量数 | <b>双据</b> " |      |                   |                                   |           |                 |                               |      |
|        | 事件种类数排      | 居    | 文件                | 名 EVT                             | S         |                 | 0000                          | .KEW |
|        | 波形数排        | 居    |                   | WAV                               | S         |                 | 0000                          | .KEW |
| 电      | 压/电流变动数排    | 居    |                   | VAL                               | S         |                 | 0000                          | .KEW |
|        |             |      |                   |                                   | I         |                 |                               |      |
|        |             |      |                   | 保存<br>S:SD -<br>M:内存              | 位置编码<br>卡 |                 | 数据 No.<br>(0000-9999)         |      |

| 本体设定的保存和读取的操作                                                                                                                                               | KEW6315                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| SET UP<br>Basic Meas. Rec. Saved data Others<br>REC data<br>Delete data.<br>Transfer data.<br>Earmat<br>KEW6315 setting<br>Save settings.<br>Read settings. | ● 移动到操作项目. →  ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● |

## "保存设定"

"• **SD** 卡或 "**还**":内存中保存" <sup>(())</sup>":设定数据。如需了解数据的记录顺序,请确认文件名的右侧显示的记录时间。但是,从内存传送到 **SD** 卡的数据会更新为传送时的日期和时间。滚动条只会在一个画面无法显示全部数据时出现。



本体设定的保存和读取的操作

### "剩余空间"

**F4** 键可将操作对象的记录信息弹出显示。 (INTER) 键可返回数据删除的画面。

测试设定

详情请参考"剩余空间"(P.84)。

### "返回"

**(F1)**键可结束输入,返回"保存数据"画面。

## 保存以下本体设定

### 基本设定

| 设定项目        |
|-------------|
| 接线          |
| 电压量程        |
| VT 比        |
| 公称电压        |
| 钳形传感器/ 电流量程 |
| CT 比        |
| DC 量程       |
| 频率          |

### 其他设定

| 设定项目       |      |  |  |  |  |
|------------|------|--|--|--|--|
| 环境设定       | 日期形式 |  |  |  |  |
|            | ID 号 |  |  |  |  |
| <b>半</b> 体 | 蜂鸣音  |  |  |  |  |

#### 设定项目 测试周期 判定周期 需求 目标值 THD(综合谐波失真) 计算方法 谐波 允许值范围的设定 最大保持 滞后界限值 瞬变界限值 上升界限值 电能质量 下降界限值 瞬停界限值 突入电流界限值 闪变 闪变系数 (斜坡)

### 记录设定

进相电容

| 设定项目      |               |  |  |  |  |  |
|-----------|---------------|--|--|--|--|--|
| ,그 크 고프 디 | 谐波            |  |  |  |  |  |
| 吃水坝日      | 电能质量 (发生事件)   |  |  |  |  |  |
| 记录方法      | 间隔            |  |  |  |  |  |
|           | 开始方法          |  |  |  |  |  |
| けたうき      | 开始时间          |  |  |  |  |  |
| 连续记求.     | 结束时间          |  |  |  |  |  |
|           | 记录期间 开始 - 结束  |  |  |  |  |  |
| 指定时间带     | 记录时间带 开始 - 结束 |  |  |  |  |  |

目标功率值

本体设定的保存和读取的操作

## "读取设定"

从 "🔤": SD 卡或 "👺":内存中读取" 🥮": 设定数据变更本体设定。需了解数据的记录顺序,请确认文件名的 右侧显示的记录时间。但是,从内存传送到 SD 卡的数据会更新为传送时的日期和时间。





在1个画面上显示多个测试值。显示项目和该显示位置可使用按键操作进行变更。

一览显示测试值

 KEW6315

 KEW6315

 UL<sup>\*1</sup> 线间电压 A 电流

| V <sup>*1</sup>  | 相电压                                                                           | VL <sup>*1</sup> | 线间电压               | A    | 电流   |
|------------------|-------------------------------------------------------------------------------|------------------|--------------------|------|------|
| Р                | 有功 + 消耗<br>电力 - 再生                                                            | Q                | 无功 + 滞后<br>电力 - 超前 | S    | 视在电力 |
| PF               | +     滞后       功率     -     超前                                                | f                | 频率                 |      |      |
| DC1              | 模拟输入<br>1 通道电压                                                                | DC2              | 模拟输入<br>2 通道电压     |      |      |
| An* <sup>2</sup> | 1 通道电压     2 通道电压       中性线电流     PA*3       ど/A 相位     + 滞后       差     - 超前 |                  | C* <sup>3</sup>    | 进相电容 |      |

<sup>\*1</sup> W 画面:选择 "3P4W"接线时,可以自定义 V 和 VL 显示。.

\*2 W 画面: "An"仅在选择 "3P4W"接线时显示。

\*3 W 画面: PA 和 C 可使用 (F4) 键自定义设定。3P3W3A 的 PA 可将线间电压变换为相电压来求得电流和相位角。

例) 1P3W-2 (2 系统)



一览显示测试值

KEW6315

"变更显示的系统"

操作 建 建可变更所显示的系统。按接线和系统数的不同可在1个画面中显示的项目如下。 用点线划分的范围表示在1个画面中可显示的范围。

### 1P2W-1 ~4 (单相 2 线式, 1 系统~4 系统)



### 1P3W-1~2 (单相 3 线式, 1 系统~2 系统)



### <u>3P3W-1~2 (三相3线式2电力计法,1系统~2系统)</u>



#### 一览显示测试值

#### KEW6315

#### <u>3P3W3A (三相3线式)</u>





### "变更显示类型"

操作 键可将显示类型切换为瞬时值,间隔范围内的平均值/最大值/最小值。 间隔时间设定为1秒时,由于显示更新和间隔时间相同,瞬时值,平均值,最大值,最小值全部都是相同的 数值。

## "Wh"综合值

按 (Wh) 键可切换到显示综合值的画面。详情请参考"6.2 综合值[Wh]" (P. 100)。

## "放大显示"

使用 (放大显示) 键可切换为选择 4 个测试值放大显示为 4 格图或选择 8 个测试值放大显示为 8 格

图。详情请参考"显示趋势图表" (P. 97)。

### "趋势图表"

按 (趋势) 键切换为显示项目的趋势图画面。显示范围是从现在时间开始计算的过去 60 分钟。详

情请参考"**显示趋势图表**" (P. 97)

### "自定义"

按 (自定义)键可变更所显示的测试项目和显示位置。详情请参考"**变更显示测试项目和显示位置**"

(**P. 99**) 。



选择4个测试值或8个测试值在一个画面上显示。由于显示了比一览显示画面更大的文字,便于确认测试值。

# "显示项目"



选择分别在各自位置上显示的测试项目。移动到左侧菜单的显示项目后,其可选择的通道和合计的测试项目 会自动显示到右侧。请从右侧的菜单上选择想要放大显示的测试项目。





- 97 -

例) 1P3W-2 (单相3线式2系统).



"变更趋势图表显示对象"

操作 👿 键可变更趋势图表所显示的测试对象。

## "Σ/CH"

**F2** (Σ/CH)键可切换显示每个系统的合计值和综合值的趋势图表或者是每个通道的趋势图表。

"Σ/CH"键的操作不限于所显示的测试值的趋势图表。对全部的趋势图表均有效。操作"Σ"时显示每个系统的合计值和综合值的趋势图表。操作"CH"时显示每个通道的趋势图表。并且,选择 3P4W 的 A: 电流有效 值的状态中操作 "Σ"时, An:中性线电流的测试值可显示为趋势图表。

"一览显示" 使用 **F3** (一览显示)键可切换到一览显示画面。



| KEW6315        |                                                            |                                                     |                                                                      |                                             |                                                           |                                                     | 6.2 综合值 | "Wh" |
|----------------|------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|---------|------|
| 6.2 综合值"\      | Nh"                                                        |                                                     |                                                                      |                                             |                                                           |                                                     |         |      |
| 按 (W/Wh) 键 —   | F1 #                                                       | 示"Wh"                                               | 宗合值画面                                                                |                                             |                                                           |                                                     |         |      |
| 例) 1P3W-2 (单木  | 目3线式2系统                                                    | 充)                                                  |                                                                      |                                             |                                                           |                                                     |         |      |
| 从记录开始的<br>经过实践 | W/Wh<br>Elapse<br>Active<br>Apparent<br>Reactive<br>DEMAND | d time<br>WP+ :<br>WS- :<br>WS- :<br>WQi+:<br>WQc+: | 00000:00<br>249.887<br>0.000<br>250.837<br>0.000<br>0.000<br>-11.286 | •<br>: 05<br>Wh<br>VAh<br>VAh<br>Var<br>var | 06/01/2014<br>16:57:14<br>Γ-LOAD<br>1 2 Σ<br>1 ch<br>2 ch | ■ <mark>2</mark> :总合计值<br>■ <mark>2</mark> :每个系统的合计 | 值       |      |

将某个期间内流动的电力作为综合电量显示。综合电量被用于电费的支付及能量管理等。

|     | 画面显示记号 |   |    |    |      |   |    |    |      |   |    |
|-----|--------|---|----|----|------|---|----|----|------|---|----|
|     | 有功电    | + | 消耗 | WO | 无功电量 | + | 滞后 | ws | 视在电量 | + | 消耗 |
| VVP | 量      | - | 再生 | WQ |      | - | 超前 |    |      | - | 再生 |

#### <u>6.2 综合值 "Wh"</u>

KEW6315

例) 1P3W-2 (单相3线式2系统)

| W/Wh     |       |          | -   | 06/01/2014<br>16:57:14 |   |
|----------|-------|----------|-----|------------------------|---|
| Elapsed  | time  | 00000:00 | :05 |                        |   |
| Activo   | WP+ : | 249.887  | Wh  |                        |   |
| ACLIVE   | WP- : | 0.000    | Wh  |                        |   |
|          | WS+ : | 250.837  | VAh | <b>1</b> 2Σ            |   |
| Apparent | WS- : | 0.000    | VAh | Σ                      |   |
| Depetive | WQi+: | 0.000    | var | 1ch<br>2ch             | V |
| Reactive | WQc+: | -11.286  | var | 2011                   |   |
| DEMAND   |       |          |     |                        |   |
| F1       |       |          |     |                        |   |

"变更显示系统" 操作 建可变更显示系统。接线盒系统数的关系请参考"接线设定"(P. 49)。

"变更显示通道" 操作 键可变更显示通道。接线和通道的关系请参考"接线设定"(P.49)。

"需求"

操作 (需求)键可切换需求值显示画面。详情请参考 "6.3 需求"(P. 102) 。

| W631   | 5                 |        |             |                     |                       |                   |      |       | 6.3   | 需 |
|--------|-------------------|--------|-------------|---------------------|-----------------------|-------------------|------|-------|-------|---|
| 3      | "需求"              |        |             |                     |                       |                   |      |       |       |   |
| 按(     | W/Wh <sub>键</sub> |        |             | 面                   |                       |                   |      |       |       |   |
| 12     |                   |        |             | Щ                   |                       |                   |      |       |       |   |
| -      | ₩ 显示              | "测试值/- | 一段时间内推移     | 图/需求推移图" 画          | 面                     |                   |      |       |       |   |
| 显      | 示测试(              | 直      |             |                     |                       |                   |      |       |       |   |
|        |                   |        |             |                     |                       |                   |      |       |       |   |
| V      | )<br>显示"测ì        | 式值"画面  |             |                     |                       |                   |      |       |       |   |
|        |                   |        | W/Wh        | B                   | - <b>4</b> 06//<br>16 | 01/2014<br>:57:40 |      |       |       |   |
|        |                   |        | Time left   | 00:29:55            |                       |                   |      |       |       |   |
|        |                   |        | DEM Target  | 100.0               | kW                    |                   |      | 1     |       |   |
|        |                   |        | DEM Guess   | 179.9               | kW                    | eas.              |      |       |       |   |
|        |                   |        | DEM Present | 0.499               | kW 🗖                  |                   | V    |       |       |   |
|        |                   |        | DEM Max     | 0.499               | kW 📗                  |                   |      | J     |       |   |
|        |                   |        | W           | 06/01/2014 16:42:23 |                       |                   |      |       |       |   |
|        |                   |        | (F1)        |                     |                       |                   |      |       |       |   |
| 某个     | ·期间的平均            | 电力称之う  | h需求。需求测i    | 式中预测值超过目;           | 标值的情                  | 况下,               | 每个判  | 定周期都会 | 蜂鸣擎告。 |   |
| ,,,,,, |                   | 2,     |             |                     |                       |                   | •••• |       |       |   |
|        |                   |        |             | 画面显示项目              |                       |                   |      |       |       |   |
| 乘      | 间余时间              | 倒计时计算  | 算到达需求"测     | 试周期"所设定的            | 时间.                   |                   |      |       |       | ] |
| DE     | M 目标值             | 显示需求   | "目标值"所设     | 定的数值.               |                       |                   |      |       |       | - |
|        |                   | 预测当前   | 负荷的测试周期     | 后的需求值。              |                       |                   |      |       |       |   |
|        | M - 新洲店           | (现老    | £ (测词       | <u>x</u><br>V       |                       |                   |      |       |       |   |

瞬时值"W"

DEM 预测值

DEM 现在值

DEM 最大值

/记录年月日

值)

(从测试开始的经过时间) 测试周期时间内的需求值(平均电力)

(W)键可切换瞬时值显示画面。详情请参考 6.1 瞬时值 "W"" (P. 92)。

x 周期)

<u>(测试开始后的 WP+的综合值) x 1 小时</u>

测试周期

随时间变化的同时计算后显示

显示从测试开始到结束的最大需求值。每次测试值超过最大需求值时更新显示

随时间变化的同时计算后显示.












显示电压波形和电流波形: 50Hz 时最长 10 个周期, 60Hz 时最长 12 个周期。切换为波形画面时,波形幅度 和期间会自动选择最大可显示倍率后显示。





| <u>条形图显示谐波</u><br>条形图显示<br>例) "线性"和 "满刻度显示". |                   |                                       | KEW6315 |
|----------------------------------------------|-------------------|---------------------------------------|---------|
| 含有率                                          | 10 20<br>谐波解析次数 : | 60.00Hz<br><u>30 40 50</u><br>最大 50 次 |         |

上述举例中,由于选择了"线性"和"满刻度显示",含有率的上限为 100%,1 次~50 次的全部的谐波在 1 个画面中显示。

| 画面显示项目 |                  |  |
|--------|------------------|--|
| 含有率    | 1次基本波对应的各谐波的含有率。 |  |

例) 3P4W (三相 4 线式)的对数 "LOG" 和 "放大显示".



上述举例中,由于选择了对数 "LOG"和"放大显示",含有率的上限为 10%,1个画面的显示范围是 15 次。

操作 建可滚动移动画面。但是,无法滚动作为基准的 1 次基本波。1 次~50 次的全部范围以白色 滚动条显示,现在的显示范围以深橘色滚动条显示。

### 

|       | 画面显示项目                                                           |
|-------|------------------------------------------------------------------|
| 招计抽估  | 各次数的谐波含有率超过 10%时显示。1 次基本波通常含有率为 100%,对数"LOG"                     |
| 旭辽扣阻  | 的显示通常会"超过轴值"                                                     |
|       | 显示测试开始后的最大值。                                                     |
| 最大值   | 设定变更,记录开始或 (ESC) 键 2 秒以上的长按,任何一个操作都可以重置显示。                       |
|       | 但是,记录中不能重置。                                                      |
| 图表色   | 测试通道数量多的情况下,各通道对应的颜色可使用图表分别显示。                                   |
| 超过界限值 | 测试值超过了设定的允许范围。                                                   |
| 允许范围  | 按 IEC61000-2-4 Class3 标准设定。如需变更,请从"SETUP"的谐波项目中的"允<br>许范围"中编辑变更。 |

#### 条形图显示谐波



"变更显示通道"

操作 👽 键可变更显示通道。接线和通道的关系请参考"接线设定" (P.49)。.

## "列表/图表"

(F1) 键可将 1 次~50 次的电压/电流/电力谐波分别按各自的项目显示为列表。图表的画面中只显示含有率,列表的画面中可分别选择有效值/含有率/相位角\*显示。

\* 显示 "P"电力的情况下,显示电压/电流的相位差。:±0°~±90°的范围是流入,±90°~180°的范围是流出。

## "对数/ 线性"

F2 键可将含有率(条形图的纵轴)的上限变更为 10%,显示条形图。解析等级低的谐波成分时非常有

效。

"放大显示/全部显示"

**F3** 键可从 1 次~50 次的谐波中放大 15 次,将电压/电流/电力谐波分别按各自的项目显示为条形图。15 次的显示范围可使用 健滚动画面来切换。

### "V/A/P/ΣP"

F4 键可从 V 电压/A 电流/P 电力(ΣP:系统合计,总合计)中选择谐波的解析对象。

列表显示谐波

**(F1)** 键显示列表画面

例) 1P3W-2 (单相3线式2系统) 的"P: 谐波电力"和"电力"

| In. | -    |      | n     | - 06/01/2014 |
|-----|------|------|-------|--------------|
| Ρ   | P1 1 | P2_1 | P1_2  | P2_2         |
| 1   | 88.5 | 89.1 | -20.4 | 89.1kw       |
| 2   | 0.0  | 0.0  | 0.0   | 0.0kW        |
| 3   | 0.0  | 0.0  | 0.0   | 0.0kw        |
| 4   | 0.0  | 0.0  | 0.0   | 0.0kw        |
| 5   | 0.0  | 0.0  | 0.0   | 0.0kw        |
| 6   | 0.0  | 0.0  | 0.0   | 0.0kw        |
| 7   | 0.0  | 0.0  | 0.0   | 0.0kw        |
| 8   | 0.0  | 0.0  | 0.0   | 0.0kw        |
| 9   | 0.0  | 0.0  | 0.0   | 0.0kw        |
| 10  | 0.0  | 0.0  | 0.0   | 0.0kw        |
| 11  | 0 0  | 0 0  | 0 0   | 0 0          |
| Gi  | raph | Rate |       | ΣP           |

1次~50次的电压/电流/电力谐波的有效值/含有率/相位角分别按各自的项目显示为列表。

|               | 画面显示记号                |   |    |                 |           |   |    |
|---------------|-----------------------|---|----|-----------------|-----------|---|----|
| V             | 电压 <sup>*1</sup> A 电流 |   |    |                 |           |   |    |
| <sup>*2</sup> | 夕通送去中中十               | + | 流入 | <sup>*2</sup> م | 系统合计/ 总合计 | + | 流入 |
| ٢             | 合理坦有切电力               | - | 流出 | 22              | 有功电力      | - | 流出 |

\*1 3P3W3A 中显示线间电压。

<sup>\*2</sup> 记号和数字的关系显示为"P[通道编号]\_[系统编号]"的格式。如果 P 和号码之间有间隔的情况下只能显示 系统编号。此时所显示的测试值表示每个系统的合计值。仅显示 P 的情况下,则显示的测试值表示总合计 值。

#### 列表显示谐波

|              |       |       | _     | - 05/01/2014 | 1          |
|--------------|-------|-------|-------|--------------|------------|
| <u>Illu</u>  |       |       |       | 17:03:41     |            |
| Α            | A1    | A2    | A3    | A4           |            |
| 1            | 450.0 | 448.9 | 299.7 | 448.8 /      | 1          |
| 2            | 0.0   | 0.0   | 0.0   | 0.0/         |            |
| 3            | 0.0   | 0.0   | 0.0   | 0.0/         |            |
| 4            | 0.0   | 0.0   | 0.0   | 0.0/         | $\bigcirc$ |
| 5            | 0.0   | 0.0   | 0.0   | 0.0/         |            |
| 6            | 0.0   | 0.0   | 0.0   | 0.0/         | ₩<br>I     |
| 7            | 0.0   | 0.0   | 0.0   | 0.0/         | U          |
| 8            | 0.0   | 0.0   | 0.0   | 0.0/         |            |
| 9            | 0.0   | 0.0   | 0.0   | 0.0/         |            |
| 10           | 0.0   | 0.0   | 0.0   | 0.0/         |            |
| Gr           | raph  | Rate  | 0.0   | V/A/P        | ]          |
| $\mathbb{C}$ | F1    | F2    |       | <b>F</b> 4   | -          |
|              |       |       |       |              |            |

"变更显示次数"

操作 💟 键上下滚动画面,变更显示的次数。

## "图表/列表"

**F1**键可将 1 次~50 次的电压/电流/电力谐波分别按各自的项目显示为条形图。条形图的画面中只显示含有率,

## "含有率/相位角/ 有效值 (电力)"

**F2** 键可变更列表中显示的测试项目。从含有率/相位角(以 V1 为基准(0°)的相位角)/有效值中选择所显示的测试对象。选择 P(ΣP:电力)的情况下,从含有率/相位角(每个通道的电压电流相位差)/电力中选择。

## "V"/"A"/"P/ΣP"

**F4** 键可从 V 电压/A 电流/P 电力(ΣP:系统合计,总合计)中选择谐波的解析对象。.

KEW6315

6.7 电能质量

按 QUALITY 键

## 使电能质量低下的事项及其现象

| 事项   | 波形显示 | 主要现象                                                                             | 主要利弊                                                                              |
|------|------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 谐波   |      | 机器的控制回路使用的是变频<br>回路(电容输入型整流回路)和<br>晶闸管控制回路(相位控制回<br>路)。这些回路让电流发生失真,<br>该失真会造成谐波。 | 若有谐波电流流动,会对进<br>相电容和反应装置的烧毁,<br>变压器的鸣叫,断路器的错<br>误工作,电视影像的闪烁,<br>录音等设备的杂音产生影<br>响。 |
| 电压上升 |      | 电力线的开关接通电源时产生<br>突入电流,使电压瞬时上升。                                                   |                                                                                   |
| 电压下降 |      | 马达负荷等启动时产生突入电<br>流,使电流下降。                                                        | 引起机器/熔接机器等的工作<br>停止和电脑等 OA 机器的重<br>置。                                             |
| 电压瞬停 |      | 雷击等造成电力供给的一瞬间<br>停止状态                                                            |                                                                                   |

| 使电能质量低下            | 的事项及其现象 |                                                                             | KEW631                                                                      |
|--------------------|---------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 事项                 | 波形显示    | 主要现象                                                                        | 主要利弊                                                                        |
| 瞬变,<br>过电压<br>(脉冲) |         | 由于断路器,磁力和继电器的接<br>触不良而产生。                                                   | 由于剧烈的电压变化(冲<br>击),造成机器的电源破坏,<br>重启。                                         |
| 突入电流               |         | 拥有马达,白炽灯,大容量的平<br>板电容器的机器等启动时在短<br>时间内流动的大电流(浪涌电<br>流)。                     | 引起电源开关接点的熔化,<br>保险丝的熔断,断路器的跳<br>脱,整流回路等的恶化影响,<br>电源电压的不稳定性。                 |
| 不平衡率               |         | 动力线负荷的增减,过多设备机<br>器增设等原因,对特定的相位造<br>成重负荷。因此,发生电压,电<br>流波形的失真,电压下降以及逆<br>相电压 | 发生电压,电流的不平衡,<br>马达的选择不均,逆相电压,<br>谐波等。                                       |
| 闪变                 |         | 电力线等每个相位都接触的负<br>荷的增减,设备机器的过度工作<br>的缘故,使特定相位上的负荷加<br>重,发生电压下降。              | 由于电压的不平衡, 逆相电<br>压, 谐波的产生等原因可能<br>会引起马达的选择不均, 断<br>路器的重启, 变压器的过负<br>荷发热等事故。 |



#### 多相系统中的事件判定.

"瞬停"

按接线方式作为测试对象的所有通道的电压在瞬停时的时间点判定为事件开始。之后,任何一个通道的瞬停 结束时的时间点判定为事件结束。

## "上升/下降/ 突入电流/ 瞬变"

按接线方式作为测试对象的任何一个通道的电压/电流在进入事件状态时的时间点判定为事件开始。之后,所 有通道的事件结束时的时间点判定为事件结束。

#### 显示事件的发生状况

#### 上升/下降/瞬停/突入电流的测试方法

无间隙地每半个周期重叠的 1 个波形的有效值开始检出各事件。1 个波形的有效值中初次检出事件时,此 1 个波形的开头作为事件开始时间,之后的 1 个波形的有效值中未检出事件时,此波形的开头作为事件结束时 间。并且,从开始到结束之间可以视为事件持续。

#### 检出下降的举例

\* 瞬停也可以用同样的方法检出。.



#### <u>瞬变的判定方法</u>

将电压波形无间隙地按约 40ksps 的速度监控,约每 200ms 区间计算并判定瞬变。因此,初次检出瞬变的约 200ms 区间的最初部分作为事件开始时间,之后的 200ms 区间未检出瞬变时,将该区间的最初部分作为事件 结束时间。并且,从开始到结束之间可以视为事件持续。



#### <u>保存数据</u>

事件发生时,记录此事件的种类,开始时间,结束时间,测试值的同时还能记录事件波形和有效值变动。但 是,事件波形只记录数据更新时间 1 秒内约 200ms 的区间。

#### 事件波形

包含事件数据的约 200ms(50Hz: 10 个周期/60Hz: 12 个周期)的区间的所有通道的电压/电流波形数据按 8192 点记录。数据更新时间 1 秒内同时发生数个不同时间的情况下,只记录包含最优先顺位的较高事件的 约 200ms 区间的波形数据。但是,相同项目的事件同时发生的情况下,选择显示最高值(最深值)的事件。如果最高值(最深值)的事件相同的情况下,选择记录发生期间较长的事件。并且,连接通道之间没有优先 顺位。

[最优先]: 电压瞬变-> 瞬停 -> 下降 -> 上升 -> 突入电流

有效值变动

记录包含事件数据的数据更新时间约1秒内的所有通道的电压/电流有效值(分辨率:半个周期)变动数据。



约800ms 间的下降检出举例(保存数据)





带有电弧炉负荷之类的变动负荷时,电压会变动可能会导致照明等闪烁的不稳定现象发生。这种状态称之为电压 闪变。"Pst" and "Plt"显示此现象的严重程度。.

|          | 画面显示记号                                 |
|----------|----------------------------------------|
| 剩余时间     | 倒计时计算到Pst计算完成的剩余时间。Pst的评价需要10分钟的测试时间。  |
| V        | 相电压 * 3P3W 、3P3W3A 中显示线间电压。            |
| f        | 频率                                     |
| Dot 1 公陆 | 1分钟内所测试的短时间闪变的严重度。作为判断基准在电力调查和研究时的评价中非 |
| FSI,T 刀杆 | 常有效。                                   |
| Pst      | 10 分钟内所测试的短时间闪变的严重度。                   |
| Pst,最大   | 从记录开始后的 Pst 的最大值。每次超过现在的最大值时更新显示测试值。   |
| Plt      | 2 小时内所测试的长时间闪变的严重度。                    |
| Plt,最大   | 从记录开始后的 Plt 的最大值。每次超过现在的最大值时更新显示测试值。   |

"事件"

F1

键可切换事件发生状况的显示画面。详情请参考"显示事件的发生状况"(P. 116)。



显示最新 120 分钟内所测试的"Pst, 1 分钟"的趋势图表。

|                 | 画面显示记号                                                         |
|-----------------|----------------------------------------------------------------|
| <b>Pst,1</b> 分钟 | 1分钟内所测试的短时间闪变的严重度。                                             |
| 最大值             | 从记录开始后的 Pst,1 分钟的最大值。每次超过现在的最大值时更新显示 Pst,1 分钟的测试值。             |
| 经过时间            | 最新测试值显示在右端(经过时间0分钟),每次经过一段时间后显示位置向左移动。<br>显示范围是从现在时间开始最长120分钟。 |



"数据保留功能"

7 其他功能

按下 DATA HOLD (数据保留)键后,不管是否在测试状态,都会停止更新显示值,画面上出现"<sup>GGM</sup>"标志。再次按 DATA HOLD (数据保留)键后,"<sup>GGM</sup>"标志消失,重新开始更新显示值。数据保留中仍旧能切换显示确认各画面的测试值。记录中即使停止更新显示,仍然如常记录测试值和事件信息。

"按键锁定功能"

按 DATA HOLD (数据保留)键 2 秒以上,画面上显示" 🏥 "标志,从此时开始,除了 LCD 键之外的其他所有按键都无效。再次按 DATA HOLD (数据保留)键 2 秒以上," 📑 "标志消失,解除锁定功能。

"熄灭背光灯"

按 LCD 键熄灭背光灯。如再次点亮背光灯时,请按电源键以外的任意键。

"自动熄灭背光灯"

连接 AC 电源时:

无任何操作 5 分钟后自动熄灭背光灯。如再次点亮,请按电源键以外的任意键可再次点灯 5 分钟。在 SET UP 里选择"不自动 OFF"后可一直点亮背光灯。

#### 使用电池驱动时:

切换为电池驱动时为了节约消耗电流,背光灯会调节为 AC 电源驱动状态的 1/2 左右。无任何操作 2 分钟 后,自动熄灭背光灯。如再次点亮,请按电源键以外的任意键可再次点灯 2 分钟。使用电池驱动无法保持 一直点灯的状态。

"自动关机"

### 连接 AC 电源时:

无任何操作 5 分钟后自动关机。但是,记录中的状态不会 OFF。如需再次接通电源,请按电源键。在 SET UP 里选择"不自动 OFF"后可一直接通电源。

### 使用电池驱动时:

无任何操作 5 分钟后自动关机。但是,记录中的状态不会 OFF。如需再次接通电源,请按电源键。使用电 池驱动无法保持始终接通电源的状态。

## "电流自动量程"

按测试的电流实效值可自动切换各传感器的电流量程。记录电能质量的事件时不能选择。切换是指输入超过 量程的 300%峰值的话上调量程。低于量程的 100%峰值的话下调量程。但是,显示会固定在上侧的量程中。

## "传感器识别功能"

在 SET UP 中操作传感器识别项目可自动识别现在本体所连接的钳形传感器。 启动电源时,自动确认此时所连接的钳形传感器和上次测试时设定的传感器的相关信息。

## "停电恢复功能"

记录中由于失去电源供给而自动关机的情况下,在再次接通电源后会自动开始记录。

### "截屏功能"

操作截屏键,将当前显示的画面保存为 BMP 文件。1 个文件的尺寸约为 77KB。

#### "设定记录功能"

为了能即使关闭电源,上次测试时的所有设定

### "快速开始向导"

操作 START/STOP (开始/停止) 键后启动快速开始向导。按画面显示内容依次设定项目后可简单地开始记录。

## "状态显示 LED"

背光灯熄灭状态中红色 LED 闪烁,记录中与背光灯的点亮与否无关,通常会点亮绿色 LED。记录待机状态时绿色 LED 闪烁。

8.1 PC: 与电脑的数据传输

# 8 与周边机器的连接

## 8.1PC: 与电脑的数据传输

SD 卡和内存中保存的数据可通过 USB 连接或 SD 读卡器传送到 PC。

|            | PC 传送方法           |     |
|------------|-------------------|-----|
|            | USB <sup>*1</sup> | 读卡器 |
| SD 卡数据(文件) | Δ                 | 0   |
| 内存数据 (文件)  | 0                 |     |

\*1: 建议使用 SD 读卡器将数据转移到 PC。(本仪器的传送时间约 320MB/小时) 保存容量大的数据直接通过 USB 连接电脑传送会比使用 SD 读卡器所需时间更长。所使用的 SD 卡的处理 请参考附带的使用说明书。为了能确实地保存数据,请勿在 SD 卡中记录本仪器之外的文件。请事先全部 删除不需要的文件。





#### Connection to input/ output terminals

1 打开端口盖。

2 端口上的四角部分用一字螺丝刀按下后插入信号线。

3 移开螺丝刀后固定信号线。



"输入端口"

监控温度传感器等的电压输出信号。在同时测试其他机器输出的信号和该电源引起的异常的情况下适用。

通道数: 2ch

输入抗阻:约 225.6kΩ

### "输出端口"

电能质量的事件发生中,将输出端口调整为"LOW(低)"。通常情况下设定为 HIGH(高)。事件的持续时间不满 1 秒的情况下,1 秒内将输出端口调整为"LOW"。但是,仅限于输出对象事件是事件设定中最优先等级的事件。若需与低优先等级的事件同步将输出端口调整为"LOW"时,请先将比该事件更高优先等级的事件设定为"OFF"。

详情请参考"电能质量界限值设定"P65。 \*[最优先]: 瞬时 -> 瞬停 -> 下降-> 上升 -> 突入电流



KEW6315

## 8.4 测试线的电源供给

无法提供使用插座的 AC 电源供给时,请使用 MODEL 8312 (电源适配器),可以通过电压测试线提供电源。

⚠ 危险

与测试线及本体的测试种类不同时,请优先使用较低一方的测试种类。请确认测试电压与额定电压相符。

240V 以上

4

1/6

- 请勿连接测试中不需要的电压测试线。
- 请先将测试线连接本体。
- 测试中(测试线通电状态中)请勿从本体的端口上取下。
- 请连接到断路器的2次回路上。1次回路上的电流过大,会有危险。

#### ♠ 警告

- 请确认本体电源设定为 OFF 以后连接。
- 必须先连接本体,请完全插入到端口。
- 若使用中发现龟裂,金属部分暴露的情况,请立刻停止测试。

请按以下顺序连接仪器。

- 1 确认 MODEL8312 的电源开关在 OFF 上。
- 2 将 MODEL8312 的插头插入 KEW6315 的 VN 和 V1 端口。
- 3 将 MODEL8312 的电源插头插入 KEW6315 的电源端口。
- 4 将 MODEL8312 的 VN 和 V1 端口分别连接各自的电压测试线。
- 5 将电压测试线的鳄鱼夹连接被测回路。
- 6 接通 MODEL8312 电源。
- 7 启动 KEW6315。

\* 要取下本仪器时请倒过来按 7~1 的顺序进行。

详细的使用方法请参考 MODEL8312 的使用说明书。

MODEL8312 -

Measurement CAT.III 150V CAT.II 240V

Fuse rating : AC500mA/ 600V, Fast acting,  $\phi$ 6.3 x 32mm

**KEW Windows** 

KYORITSU

**KEW 6315** 

# 9 设定 解析用 PC 软件

在电脑上使用软件 "KEW Windows for KEW6315",可分析本体上记录的数据并进行本体设定。 ※ 一键自动可将记录数据转换成图表和列表,记录数据的 CSV 形式转换,多台设备的设定数据,记录数据 的一元化管理,以报告形式输出遵循能源节约法的原油,CO2 换算值等。



使用 "KEW Windows for KEW6315" 软件时,请参考其安装说明书将应用程序和 USB 驱动安装到电脑上。

 接口: 本仪器具备 USB, 蓝牙<sup>®</sup> 接口 通信方式:USB Ver2.0 蓝牙<sup>®</sup>: 蓝牙<sup>®</sup> Ver2.1+EDR (等级 2) 兼容配置文件: SPP

USB/蓝牙<sup>®</sup> 通信功能可进行以下事项。

- \* 将本体内存中的文件下载到电脑
- \* 在电脑上进行本体的设定
- \* 可实时取得本体上的测试值, 在电脑上显示测试值和图表
- 推荐系统
  - \* OS (操作系统)
  - Windows<sup>®</sup> 8/ 7/ Vista/ XP
  - \* 画面显示 1024 × 768, 65536 色以上
  - \* HDD (硬盘)
  - 空间 1Gbyte 以上 (包括 Framework)
  - \*.NET Framework (3.5 以上)
- 商标
- \*Windows<sup>®</sup> 美国微软公司注册商标。
- \* 蓝牙<sup>®</sup> Bluetooth SIG 公司注册商标。

请前往本公司官网下载最新软件: http://www.kew-ltd.com.cn

## 10.1安全规格

10 规格

| 使用环境         | : 室内使用 高度 2000 米以下                                     |
|--------------|--------------------------------------------------------|
| 保证精确度温湿度范围   | :23℃±5℃,相对湿度 85% 以下 (无结露 )                             |
| 使用温湿度范围      | : 0℃ to 45℃,相对湿度 85% 以下(无结露 )                          |
| 保存温湿度范围      | :-20℃ to 60℃,相对湿度 85% 以下(无结露 )                         |
| 耐电压          |                                                        |
| AC5160V/ 5 秒 | (交流电压输入端口) - (外箱) 间                                    |
| AC3310V/ 5 秒 | (交流电压输入端口) - (电流输入端口,电源插口,通信 SUB 插口) 间                 |
| AC2210V/ 5 秒 | (电源插口) - (电流输入端口,通信 SUB 插口,外箱) 间                       |
|              |                                                        |
| 绝缘电阻         | : 50MΩ 以上 / 1000V; (电压/电流输入端口,电源插口) - (外箱)间            |
|              | Power connector) and (Enclosure)                       |
| 安全规格         | : IEC 61010-1 测试 CAT.IV 300V CAT.III 600V CAT.II 1000V |
|              | 污染度 2, IEC 61010-031, IEC61326 A 等级                    |
| 防尘/防水        | : IEC 60529 IP40                                       |

## 10.2一般规格

测试线和输入通道 : 与接线无关的电流通道 (A2-A4) 可独立测试

| 12 AV                 | 输入通道              |             |  |
|-----------------------|-------------------|-------------|--|
| 按线                    | 电压                | 电流          |  |
| 单相 2 线式-1 系统 (1P2W-1) | VN-V1             | A1          |  |
| 单相 2 线式-2 系统(1P2W-2)  | VN-V1             | A1,A2       |  |
| 单相 2 线式-3 系统(1P2W-3)  | VN-V1             | A1,A2,A3    |  |
| 单相 2 线式-4 系统(1P2W-4)  | VN-V1             | A1,A2,A3,A4 |  |
| 单相 3 线式-1 系统(1P3W-1)  | VN-V1,V2          | A1,A2       |  |
| 单相 3 线式-2 系统(1P3W-2)  | VN-V1,V2          | A1,A2,A3,A4 |  |
| 三相 3 线式-1 系统(3P3W-1)  | VN-V1,V2          | A1,A2       |  |
| 三相 3 线式-2 系统(3P3W-2)  | VN-V1,V2          | A1,A2,A3,A4 |  |
| 三相 3 线式(3P3W3A)       | V1-V2,V2-V3,V3-V1 | A1,A2,A3    |  |
| 三相 4 线式(3P4W)         | VN-V1,V2,V3       | A1,A2,A3    |  |

LCD

: 3.5 英寸, TFT 液晶, QVGA(320×RGB×240)

显示更新周期 :1 秒 \*

\* 从测试演算处理的关系开始到画面上反映实际测试值为止,最大有2秒的延迟。但是,记录数据和时间标示不延迟。

| 背光灯    | : 灭灯: 点灯状态中按 LCD 键         |
|--------|----------------------------|
|        | 点灯: 灭灯状态中按除了电源键外的任意键       |
| 电能品质测试 | : IEC 61000-4-30 Ed.2 S 等级 |
| 外形尺寸   | : 175(L)×120(W)×68(D)mm    |
| 质量     | :约 900g (含电池)              |

|       |                                    |                                   |                          |                                | KEW6318             |
|-------|------------------------------------|-----------------------------------|--------------------------|--------------------------------|---------------------|
| 附件    | :电压测试线                             | :MODEL7255 (红,                    | 白,蓝,黑谷                   | 各1根(附鳄鱼                        | 鱼夹)・1 套             |
|       | 电源线 M                              | ODEL7169                          |                          |                                | 1 根                 |
|       | USB线 M                             | ODEL7219                          |                          |                                | 1根                  |
|       | 简易手册·                              |                                   |                          |                                | 1 本                 |
|       | CD-ROM-                            |                                   |                          |                                | 1 张                 |
|       | 设定,<br>使用说「                        | 分析用 PC 软件(KEV<br>明书(PDF )         | V Windows fo             | or KEW6315)                    |                     |
|       | 单3形碱                               | 生于电池 (LR6)                        |                          |                                | 6 pcs               |
|       | SD 卡 M-                            | 8326-02                           |                          |                                | 1 pce               |
|       | 便携包 M                              | ODEL9125                          |                          |                                | 1 pce               |
|       | 输入端口则                              | Ь<br>                             |                          |                                | 1 pce               |
| 可选件   | 识别标签·<br>:钳形传感<br>MODEL8<br>MODEL8 | 器<br>128 (钳形传感器<br>127 (钳形传感器     | 8 色 x 4 ᡮ<br>50A<br>100A | 艮 (红/蓝/黄/ś<br>ø24mm)<br>ø24mm) | 绿/茶色/灰/黑/白 <b>)</b> |
|       | MODEL8                             | 126 (钳形传感器                        | 200A                     | ø40mm)                         |                     |
|       | MODEL8                             | 125 (钳形传感器                        | 500A                     | ø40mm)                         |                     |
|       | MODEL8                             | 124 (钼形传感器<br>129 (柔性桂咸哭          | 1000A<br>3000A           | Ø68mm)<br>ø150mm)              |                     |
|       | MODEL8                             | 130 (柔性传感器                        | 1000A                    | ø110mm)                        |                     |
|       | MODEL8                             | 146 (漏电传感器                        | 10A                      | ø24mm)                         |                     |
|       | MODEL8                             | 147 (漏电传感器<br>148 (漏由 <i>住</i> 咸哭 | 10A<br>10A               | ø40mm)<br>ø68mm)               |                     |
|       | MODEL8                             | 141 (漏电传感器                        | 1A                       | ø24mm)                         |                     |
|       | MODEL8                             | 142 (漏电传感器                        | 1A                       | ø40mm)                         |                     |
|       | MODEL8<br>钳形住咸                     | 143 (漏电传感器<br>翠的庙田说眼书             | 1A                       | ø68mm)                         |                     |
|       | 带磁铁的                               | 更携箱 MODEL913                      | 32                       |                                |                     |
|       | 电源供给证                              | 适配器 MODEL83                       | 12 (CAT.III 15           | 0V, CAT.II 240                 | )V)                 |
| 实时精确度 | : ±5 秒/                            | 日以内                               |                          |                                |                     |
| 电源    | : AC 电源                            | i                                 |                          |                                |                     |
| 电压范围  |                                    | AC100V(AC90V)                     | - AC240V(AC              | 264V)                          |                     |
| 频率    |                                    | 50Hz(47Hz) - 60Hz(63Hz)           |                          |                                |                     |
| 消耗电力  |                                    | 最大 7VA                            |                          |                                |                     |
|       | :DC 电源                             |                                   |                          |                                |                     |
|       |                                    | 干电                                | 池                        |                                | 充电电池                |
| 电压    |                                    | DC3.0V                            |                          | DC2.4V                         |                     |

|                | 干电池              | 充电电池                |
|----------------|------------------|---------------------|
| 电压             | DC3.0V           | DC2.4V              |
|                | (1.5V×2 直列 ×3并列) | (1.2V×2 直列 ×3 并列)   |
| 使用电池           | 单3形碱性干电池 (LR6)   | 单3形Ni-MH充电电池        |
|                |                  | (1900mA/h)          |
| 消耗电流           | 1.0A typ.(@3.0V) | 1.1A typ.(@2.4V)    |
| 连续使用时间※ 23℃参考值 | 背光灯关:3小时         | 背光灯关: <b>4.5</b> 小时 |
|                |                  | * 充满电的情况下           |

实时 OS (操作系统) :

本产品是按 T-Engine Forum (<u>www.t-engine.org</u>)的 T-许可证为基准使用 T-Kernel 源程序。 本产品的软件的著作权的一部分属于 (c) 2010 The FreeType Project (<u>www.freetype.org</u>)。 所有版权归于其所有者。

10.2 一般规格

| 外部通信    | : USB * 连挂 | 妾 USB 线长度: 2m 以下                            |
|---------|------------|---------------------------------------------|
| 端口形状    |            | mini-B                                      |
| 通信方式    |            | USB Ver2.0                                  |
| USB 识别号 |            | 供应商 ID: 12EC(Hex)                           |
|         |            | 生产 ID: 6315(Hex)                            |
|         |            | 序列号.: <b>0+7</b> 位数机体号                      |
| 通信速度    |            | 12Mbps (全速)                                 |
|         |            | :蓝牙 <sup>®</sup>                            |
| 通信方式    |            | 蓝牙 <sup>®</sup> Ver2.1+EDR 等级 2             |
| 配置文件    |            | SPP                                         |
| 频率      |            | 2402 - 2480MHz                              |
| 变调方式    |            | GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps) |
| 传送方式    |            | 跳频系统                                        |

数字输出端口:

通常情况下设定为 HIGH (高)。测试值超过电能质量事件的界限值时,输出端口就调整为 LOW (低)。 事件持续时间未满 1 秒的情况下, 1 秒内调整为 LOW (低)。多个事件判定都为 ON 时,输出对象仅限于事 件设定中最优先等级的事件。若需与低优先等级的事件同步将输出端口调整为 "LOW"时,请先将比该事件 更高优先等级的事件设定为 "OFF"。

\* [最优先]: 瞬时 -> 瞬停 -> 下降-> 上升 -> 突入电流

| 端口形状 | 贯通型无螺丝端口 6 极 (黑/红/灰 ML800-S1H-6P) |
|------|-----------------------------------|
| 输出形式 | 开路集电极输出,低电平有效                     |
| 输入电压 | 0 - 30V, 最大 50mA, 200mW           |
| 输出电压 | 高:4.0V-5.0V, 低:0.0 - 1.0V         |

| 记求谷軍                                                    |                                                                                 |
|---------------------------------------------------------|---------------------------------------------------------------------------------|
| 数据容量                                                    | 14.623 字节/数据(最大记录件数: 234 件) <sup>*</sup> 3P3W-2/1P3W-2 (申力+谐波)设定时               |
| 可保存文件数                                                  |                                                                                 |
| 显示记号                                                    | 内存作为有效记录位置时,仅在记录中"                                                              |
| FULL 显示                                                 | 保存数据超过记录容量时,"                                                                   |
|                                                         | 点灯状态中不能记录。                                                                      |
|                                                         | 继续综合/需求测试,不记录。                                                                  |
|                                                         |                                                                                 |
| 容量                                                      |                                                                                 |
| 数据容量(2GB)                                               | 14,623 字节/数据(最大记录件数:1,271,964 件)                                                |
|                                                         | *3P3W-2/1P3W-2(电力+谐波)设定时                                                        |
| 可保存文件数<br>(2GB)                                         | 最大 65536 个测试数据 * 可开始记录的次数                                                       |
| 显示记号                                                    | SD 卡作为有效记录位置时," □, 标志点亮。                                                        |
| 格式化形式 (2GB)                                             | FAT16                                                                           |
| FULL 显示                                                 | 保存数据超过记录容量时,超过可保存文件数时,"                                                         |
|                                                         | 占灯状态中不能记录                                                                       |
|                                                         | 继续综合/雲求测试、不记录                                                                   |
| <b>)</b> 测片于相较                                          |                                                                                 |
| 3 侧风观俗                                                  |                                                                                 |
| 则试项目类别,                                                 | 分析数据数                                                                           |
| 200ms(50Hz:10 个周                                        | 期, 60Hz:12 个周期) 作为 1 个测试范围,按 8192 点 的数据演算的项目                                    |
| 频率,电压有效值,                                               | -<br>电流有效值,有功电力,视在电力,无功电力,功率,进相电容                                               |
|                                                         |                                                                                 |
| 200ms(50Hz:10 个周                                        | 期, 60Hz:12 个周期) 作为 1 个测试范围,按 2048 点 的数据演算的项目                                    |
| 电压不平衡率, 电流,                                             | 个半衡率,谐波电压有效值(含有率)谐波电流有效值(含有率),综合谐波电压<br>绘会逃波电流生真束(TUDA F(D)、逃波电压相合会,逃波电流相合会,逃波电 |
| 具举(IHDV-F/K),<br>由流相位角                                  | 综合谘波电流矢具率(IHDA-F/R),谘波电压相位用,谘波电流相位用,谘波电                                         |
| 电弧相应用                                                   |                                                                                 |
| 每个半波重叠的1个                                               | 波形作为 1 个测试范围,按 819 点的数据 (50Hz), 682 点的数据 (60Hz) 演算的                             |
| 9     以王且曰                                              |                                                                                 |
|                                                         |                                                                                 |
| 目<br>电压下降,电压上升,                                         | 瞬停,突入电流                                                                         |
| <ul> <li>电压下降,电压上升,</li> <li>40.96ksps 的瞬时测镜</li> </ul> | 瞬停,突入电流<br>【信中显示的项目                                                             |
| <ul> <li>40.96ksps 的瞬时测试</li> </ul>                     | 瞬停,突入电流<br>【值中显示的项目                                                             |

瞬时测试项目

| 瞬时测试项目        |                                                                                                                                                |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 频率 f [Hz]     |                                                                                                                                                |
| 显示位数          | 4 位                                                                                                                                            |
| 频率            | <b>±2dgt (40.00Hz - 70.00Hz, V1</b> 量程 10% - 110%, 正弦波)                                                                                        |
| 显示量程          | 10.00 - 99.99Hz                                                                                                                                |
| 信号源           | V1(固定)                                                                                                                                         |
| 10 秒平均频率      | f10 [Hz]                                                                                                                                       |
| 显示位数          | 4 位,间隔 10 秒时的频率平均值                                                                                                                             |
| 测试方法          | Complied with IEC61000-4-30                                                                                                                    |
| 精确度           | <b>±2dgt (40.00Hz - 70.00Hz, V1</b> 量程 10% - 110%, 正弦波)                                                                                        |
| 显示范围          | 10.00 - 99.99Hz                                                                                                                                |
| 信号源           | V1(固定)                                                                                                                                         |
| R.M.S. 电压有    | 百效值 V [Vrms]                                                                                                                                   |
| 量程            | 600.0/1000V                                                                                                                                    |
| 显示位数          | 4位                                                                                                                                             |
| 有效输入范围        | 量程的 1% - 120% (rms) ,量程的 200% (峰值)                                                                                                             |
| 显示量程          | 量程的 0.15% - 130% (未满 0.15% 显示为"0")                                                                                                             |
| 峰值因数          | 3 以下                                                                                                                                           |
| 测试方法          | IEC61000-4-30 标准                                                                                                                               |
| 精确度           | 测试波形 正弦波 40-70Hz, 600V 量程                                                                                                                      |
|               | 公称电压 100V 以上 10% - 150% :公称电压±0.5%                                                                                                             |
|               | 上述范围以外和 1000V 量程 :±0.2%rdg±0.2%f.s.                                                                                                            |
| 输入阻抗          | 约 1.67MΩ                                                                                                                                       |
| 演算公式          | $V_{c} = \sqrt{\left(\frac{1}{n} \left(\sum_{i=0}^{n-1} (V_{ci})^{2}\right)\right)}$ i: 采样位置 No*<br>n: 10 个周期, 12 个周期的取样数<br>c: 测试通道           |
| 1P2\//_1 to / | ~ 50HZ: 10 个波形 8192 点, 60HZ: 12 个波形 8192 点进1 演算                                                                                                |
| 1P3W-1 to 2   | V1<br>V4 V2                                                                                                                                    |
| 3P3W-1 to 2   | ◆1, ◆2<br>                                                                                                                                     |
|               | 线向电压. $V_{12}$ 、 $V_{23}$ 、 $V_{31} = V$ ( $V_{23}$ 2 + $V_{12}$ 2 + $Z$ $V_{23}$ $V$ 12 × COSOV)<br>* $\theta V = V_{12}$ . $V_{23}$ 的相对角     |
| 3P3W3A        | 线间电压:V <sub>12</sub> , V <sub>23</sub> , V <sub>31</sub>                                                                                       |
| 3P4W          | 相电压: V1, V2, V3                                                                                                                                |
|               | 线间电压: V <sub>12</sub> = √(V <sub>1</sub> <sup>∧</sup> 2 + V <sub>2</sub> <sup>∧</sup> 2-2×V <sub>1</sub> ×V <sub>2</sub> ×cosθV <sub>1</sub> ) |
|               | $V_{23} = \sqrt{(V_2^2 + V_3^2 - 2xV_2 \times V_3 \times \cos\theta V_2)}$                                                                     |
|               | $V_{31} = \sqrt{(V_{3}^{2} + V_{1}^{2} - 2xV_{3}xV_{1}x\cos\theta V_{3})}$                                                                     |
|               | * $\theta V_1 = V_1, V_2$ 的相对角, $\theta V_2 = V_2, V_3$ 的相对角.                                                                                  |
|               | $\theta V_1 = V_3, V_1$ 的相对角                                                                                                                   |
| L             | ··· [ -··]··[ +··]·[··]··]·                                                                                                                    |

| tems measured at Instan | taneous measurement                                                                                  |                       |                                                                                                             | KEW6315        |
|-------------------------|------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|----------------|
| <b>R.M.S</b> . 电流有      | 有效值 [Arms]                                                                                           |                       |                                                                                                             |                |
| 量程                      | MODEL8128                                                                                            | (50A)                 | :5000m/50.00A/AUTO                                                                                          |                |
|                         | MODEL8127                                                                                            | (100Á)                | :10.00/100.0A/AUTO                                                                                          |                |
|                         | MODEL8126                                                                                            | (200A)                | :20.00/200.0A/AUTO                                                                                          |                |
|                         | MODEL8125                                                                                            | (500A)                | :50.00/500.0A/AUTO                                                                                          |                |
|                         | MODEL8124/30                                                                                         | (1000Å)               | :100.0/1000A/AUTO                                                                                           |                |
|                         | MODEL8141/8142/8143                                                                                  | (1A)                  | :500.0mA                                                                                                    |                |
|                         | MODEL8146/8147/8148                                                                                  | (10Á)                 | :1000m/10.00A/AUTO                                                                                          |                |
|                         | MODEL8129                                                                                            | (3000A)               | :300.0/1000/3000A                                                                                           |                |
| 显示位数                    | 4位                                                                                                   |                       |                                                                                                             |                |
| 有效输入范围                  | 各量程的 1% - 110% (rms                                                                                  | s) ,量程的 200           | 9% (峰值)                                                                                                     |                |
| 显示范围                    | 各量程的 0.15% - 130% (                                                                                  | 未满 0.15% 显示           | 示为"0")                                                                                                      |                |
| 峰值因数                    | 3 以下                                                                                                 |                       |                                                                                                             |                |
| 测试方式                    | IEC61000-4-30 标准                                                                                     |                       |                                                                                                             |                |
| 精确度                     | 测试波形 正弦波 40-70H                                                                                      | Ζ,                    |                                                                                                             |                |
|                         | ±0.2%rdg±0.2%f.s.+ 钳形传感器精确度                                                                          |                       |                                                                                                             |                |
| 输入阻抗                    | 约 100kΩ                                                                                              |                       |                                                                                                             |                |
| 演算公式                    | $A_{c} = \sqrt{\left(\frac{1}{n}\left(\sum_{i=0}^{n-1}\left(\lambda_{i}\right)\right)\right)^{n-1}}$ | $(\mathbf{A}_{ci})^2$ | c:测试通道 A <sub>1,</sub> A <sub>2,</sub> A <sub>3,</sub> A <sub>4</sub><br>i: 采样位置 No*<br>n: 10 个周期,12 个周期的取材 | 羊数             |
|                         | * 50Hz: 10 个波形 8192 点, 60Hz: 12 个波形 8192 点进行演算                                                       |                       |                                                                                                             |                |
|                         | * 3P3W-1~2 接线时的 A3 值是由电流有效值计算得出。                                                                     |                       |                                                                                                             |                |
|                         | $A_3 = \sqrt{(A_1^2 + A_2^2 + A_2^2)}$                                                               | xA1xA2xcosθA          | ) relative angles of $\theta A = A_1$ ,                                                                     | A <sub>2</sub> |

#### <u>KEW6315</u>

# 有功电力 P [W]

| 量程           |                                                                                                                        |                                                |                |              |            |        |
|--------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------|--------------|------------|--------|
| 电流           | 8128                                                                                                                   |                                                | 8127           |              | 8126       |        |
| 电压           | 50.00A                                                                                                                 | 5000mA                                         | 100.0A         | 10.00A       | 200.0A     | 20.00A |
| 1000V        | 50.00k                                                                                                                 | 5000                                           | 100.0k         | 10.00k       | 200.0k     | 20.00k |
| 600.0V       | 30.00k                                                                                                                 | 3000                                           | 60.00k         | 6000         | 120.0k     | 12.00k |
| 电流           | 81                                                                                                                     | 25                                             | 812            | 24/30        | 8146/47/48 |        |
| 电压           | 500.0A                                                                                                                 | 50.00A                                         | 1000A          | 100.0A       | 10.00A     | 1000mA |
| 1000V        | 500.0k                                                                                                                 | 50.00k                                         | 1000k          | 100.0k       | 10.00k     | 1000   |
| 600.0V       | 300.0k                                                                                                                 | 30.00k                                         | 600.0k         | 60.00k       | 6000       | 600.0  |
| 电流           | 8141/42/43                                                                                                             |                                                | 8129           | I            |            |        |
| 电压           | 500.0mA                                                                                                                | 3000A                                          | 1000A          | 300.0A       |            |        |
| 1000V        | 500.0                                                                                                                  | 3000k                                          | 1000k          | 300.0k       |            |        |
| 600.0V       | 300.0                                                                                                                  | 1800k                                          | 600.0k         | 180.0k       |            |        |
| 显示位数         | 4位                                                                                                                     |                                                |                |              |            |        |
| 精确度          | ±0.3%rdg±0.2                                                                                                           | %f.s.+ 钳形传                                     | 感器精确度(PF       | 1, 正弦波, 40-7 | '0Hz)      |        |
|              | *Sum 值是所使用通道的总值                                                                                                        |                                                |                |              |            |        |
| PF(功率)影响     | ±1.0%rdg (40Hz-70Hz, PF0.5)                                                                                            |                                                |                |              |            |        |
| 极性显示         | 消耗 (流入):+( 无符号), 再生( 流出):-                                                                                             |                                                |                |              |            |        |
| 演算公式         | $P_{c} = rac{1}{n} \left( \sum_{i=0}^{n-1} \left( V_{ci} 	imes A_{ci}  ight)  ight)$ c: 测试通道<br>i: 采样位置 No*<br>n: 采样数 |                                                |                |              |            |        |
|              | * 50Hz: 10 个                                                                                                           | * 50Hz: 10 个波形 8192 点, 60Hz: 12 个波形 8192 点进行演算 |                |              |            |        |
| 1P2W-1 ~ 4   | $P_{1}, P_{2}, P_{3}, P_{4}, P_{sum} = P_{1} + P_{2} + P_{3} + P_{4}$                                                  |                                                |                |              |            |        |
| 1P3W(3P3W)-1 | P <sub>1</sub> , P <sub>2</sub> , P <sub>sum1</sub>                                                                    | $P_{1}, P_{2}, P_{sum1} = P_{1} + P_{2}$       |                |              |            |        |
| ~2           | P3, P4, P <sub>sum2</sub>                                                                                              | $P_{3}, P_{4}, P_{SUM2} = P_{3} + P_{4}$       |                |              |            |        |
|              | P <sub>sum</sub> =P <sub>sum1</sub> +                                                                                  | Psum2                                          |                |              |            |        |
| 3P3W3A       | P <sub>1</sub> , P <sub>2</sub> , P <sub>3</sub> , P <sub>3</sub>                                                      | sum=P1+P2+P3                                   | <b>*</b> 使用相电压 |              |            |        |
| 3P4W         | P <sub>1</sub> , P <sub>2</sub> , P <sub>3</sub> , P <sub>3</sub>                                                      | sum=P1+P2+P3                                   | }              |              |            |        |
| 外部输入电压       | 入电压 DCi [V]                                                                                                            |                                                |                |              |            |        |
| 量程           | 100.0mV/ 100                                                                                                           | 0mV/ 10.00V                                    |                |              |            |        |
| 显示位数         | 4位                                                                                                                     |                                                |                |              |            |        |
| 有效输入范围       | 各量程的 1%·                                                                                                               | - ±100% (DC)                                   |                |              |            |        |
| 显示范围         | 量程的 0.3% -                                                                                                             | ±110% (未满 0                                    | ).3% 显示为"0'    | ')           |            |        |
| 精确度          | ±0.5%f.s (DC)                                                                                                          |                                                |                |              |            |        |
| 输入阻抗         | 约 225.6kΩ                                                                                                              |                                                |                |              |            |        |
| 保存项目         | 外部输入电压                                                                                                                 |                                                |                |              |            |        |

#### 演算项目 初在由力 S [\/A]

| 7711日月 3  | VAJ                                                                                                                         |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| 量程        | 与有功电力相同                                                                                                                     |
| 显示位数      | 与有功电力相同                                                                                                                     |
| 精确度       | 各测试值所演算的 <b>±1dgt (</b> 总值: <b>±3dgt)</b>                                                                                   |
| 符号        | 无极性                                                                                                                         |
| 演算公式      | <i>Sc=Vc×Ac; Pc&gt;Sc</i> 时, <i>Pc=Sc</i> . c: 测试通道                                                                         |
| 1P2W-1~4  | $S_{1}, S_{2}, S_{3}, S_{4}, S_{sum} = S_{1} + S_{2} + S_{3} + S_{4}$                                                       |
| 1P3W-1~ 2 | S <sub>1</sub> , S <sub>2</sub> , S <sub>sum1</sub> =S <sub>1</sub> +S <sub>2</sub>                                         |
|           | S <sub>3</sub> , S <sub>4</sub> , S <sub>sum2</sub> =S <sub>3</sub> +S <sub>4</sub>                                         |
|           | S <sub>sum</sub> =S <sub>sum1</sub> +S <sub>sum2</sub>                                                                      |
| 3P3W-2    | $S_{1}, S_{2}, S_{sum1} = \sqrt{3/2}(S_{1}+S_{2})$                                                                          |
|           | $S_{3}, S_{4}, S_{sum2} = \sqrt{3/2}(S_{3}+S_{4})$                                                                          |
|           | S <sub>sum</sub> =S <sub>sum1</sub> +S <sub>sum2</sub>                                                                      |
| 3P3W3A    | S <sub>1</sub> , S <sub>2</sub> , S <sub>3</sub> , S <sub>sum</sub> =S <sub>1</sub> +S <sub>2</sub> +S <sub>3</sub> * 使用相电压 |
| 3P4W      | $S_{1}, S_{2}, S_{3}, S_{sum} = S_{1} + S_{2} + S_{3}$                                                                      |

无功电力 Q [Var]

| · - · · - · · · | •                                                                                                                   |
|-----------------|---------------------------------------------------------------------------------------------------------------------|
| 量程              | 与有功电力相同                                                                                                             |
| 显示位数            | 与有功电力相同                                                                                                             |
| 精确度             | 各测试值所演算的±1dgt (总值: ±3dgt)                                                                                           |
| 符号              | <ul> <li>- :超前相位 (电压对应的电流相位)</li> <li>+ (无符号) :滞后相位 (电压对应的电流相位)</li> <li>极性符号:计算每个测试通道中谐波无功电力,显示相反基本波的符号</li> </ul> |
| 演算公式            | $Q_c = sign \sqrt{Sc^2 - Pc^2}$ sign: 极性符号 , c: 测试通道                                                                |
| 1P2W-1 ~4       | $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{sum} = Q_{1} + Q_{2} + Q_{3} + Q_{4}$                                               |
| 1P3W(3P3W)-1    | $Q_{1}, Q_{2}, Q_{sum1} = Q_{1} + Q_{2}$                                                                            |
| ~2              | $Q_{3}, Q_{4}, Q_{sum2} = Q_{3} + Q_{4}$                                                                            |
|                 | Q <sub>sum</sub> =Q <sub>sum1</sub> +Q <sub>sum2</sub>                                                              |
| 3P3W3A(3P4W)    | $Q_{1,} Q_{2,} Q_{3,} Q_{sum} = Q_{1} + Q_{2} + Q_{3}$                                                              |

| • •                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 显示范围                                                                                                      | -1.000 ~ 0.000~ 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 精确度                                                                                                       | 各测试值所演算的±1dgt (总值:±3dgt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 符号                                                                                                        | 一 : 超前相位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                           | 放性付号: 计算母个测试通道中语波尤切电刀,显示相反基本波的付号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b></b>                                                                                                   | $PF_{c} = sign \left  rac{P_{c}}{S_{c}}  ight $ sign: Wttherefore, c: Without Mitted Mitted Structure Struct |
| 1P2W-1 ~ 4                                                                                                | PF <sub>1</sub> , PF <sub>2</sub> , PF <sub>3</sub> , PF <sub>4</sub> , PF <sub>sum</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1P3W(3P3W)-1                                                                                              | PF <sub>1</sub> , PF <sub>2</sub> , PF <sub>sum1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ~2                                                                                                        | PF <sub>3</sub> , PF <sub>4</sub> , PF <sub>sum2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                           | PF <sub>sum</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3P3W3A(3P4W                                                                                               | () PF <sub>1</sub> , PF <sub>2</sub> , PF <sub>3</sub> , PF <sub>sum</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 中性电流 A                                                                                                    | Ŋ [A] ∗ 仅适用于 3P4W 接线                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 量程                                                                                                        | 与电流有效值相同                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 显示位数                                                                                                      | 与电流有效值相同                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 显示范围<br>演算公式                                                                                              | 与电流有效值相同                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 显示范围<br>演算公式<br>An=√{A1+A<br>* θ1,2,3 分别表                                                                 | 与电流有效值相同<br>$A2\cos(\theta 2 - \theta 1) + A3\cos(\theta 3 - \theta 1)$ <sup>2</sup> + $\{A2\sin(\theta 2 - \theta 1) + A3\sin(\theta 3 - \theta 1)\}$<br>示为 V1 和A1,2,3 的相位差                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 显示范围<br>演算公式<br>$An = \sqrt{A1 + A}$<br>* $01,2,3$ 分别表<br>包压不平衡                                           | 与电流有效值相同<br> A2cos(θ2−θ1)+A3cos(θ3−θ1)} <sup>2</sup> +{A2sin(θ2−θ1)+A3sin(θ3−θ1)}<br>示为 V1 和A1,2,3 的相位差<br>  率 Uunb [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 显示范围<br>演算公式<br>$An = \sqrt{A1 + A}$<br>* $\theta$ 1,2,3 分别表<br>包压不平衡<br>显示位数                             | 与电流有效值相同<br> A2cos(θ2−θ1)+A3cos(θ3−θ1)} <sup>2</sup> +{A2sin(θ2−θ1)+A3sin(θ3−θ1)}<br>示为 V1 和A1,2,3 的相位差<br>  率 Uunb [%]<br>  5 位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 显示范围<br>演算公式<br>$An = \sqrt{A1 + A}$<br>* $01,2,3$ 分别表<br>包压不平衡<br>显示位数<br>显示范围                           | 与电流有效值相同         A2cos( $\theta 2 - \theta 1$ ) + A3cos( $\theta 3 - \theta 1$ )} <sup>2</sup> + {A2sin( $\theta 2 - \theta 1$ ) + A3sin( $\theta 3 - \theta 1$ )}         示为 V1 和A1,2,3 的相位差         率 Uunb [%]         5位         0.00% ~ 100.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 显示范围<br>演算公式<br>$An = \sqrt{A1 + A}$<br>* $\theta1,2,3$ 分别表<br>包压不平衡<br>显示位数<br>显示范围<br>接线                | 与电流有效值相同         A2cos( $\theta 2 - \theta 1$ )+A3cos( $\theta 3 - \theta 1$ )} <sup>2</sup> + {A2sin( $\theta 2 - \theta 1$ )+A3sin( $\theta 3 - \theta 1$ )}         示为 V1 和A1,2,3 的相位差         率       Uunb [%]         5位         0.00% ~ 100.00%         3P3W, 3P4W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 显示范围<br>演算公式<br>$An = \sqrt{A1 + A}$<br>* $01,2,3$ 分别表<br>也压不平衡<br>显示位数<br>显示范围<br>接线<br>测试方法             | 与电流有效值相同         A2cos( $\theta 2 - \theta 1$ ) + A3cos( $\theta 3 - \theta 1$ )} <sup>2</sup> + {A2sin( $\theta 2 - \theta 1$ ) + A3sin( $\theta 3 - \theta 1$ )}         示为 V1 和A1,2,3 的相位差         率 Uunb [%]         5位         0.00% ~ 100.00%         3P3W, 3P4W         IEC61000-4-30 标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 显示范围<br>演算公式<br>$An = \sqrt{A1 + A}$<br>* $\theta1,2,3$ 分别表<br>包压不平衡<br>显示位数<br>显示范围<br>接线<br>测试方法<br>精确度 | 与电流有效值相同         A2cos( $\theta 2 - \theta 1$ ) + A3cos( $\theta 3 - \theta 1$ )} <sup>2</sup> + {A2sin( $\theta 2 - \theta 1$ ) + A3sin( $\theta 3 - \theta 1$ )}         示为 V1 和A1,2,3 的相位差         率       Uunb [%]         5位         0.00% ~ 100.00%         3P3W, 3P4W         IEC61000-4-30 标准         测试波形 50/60Hz, 正弦波: ±0.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 显示范围<br>演算公式<br>$An = \sqrt{A1 + A}$<br>* $01,2,3$ 分别表<br>包压不平衡<br>显示位数<br>显示范围<br>接线<br>测试方法<br>精确度      | 与电流有效值相同         A2cos( $\theta 2 - \theta 1$ ) + A3cos( $\theta 3 - \theta 1$ )} <sup>2</sup> + {A2sin( $\theta 2 - \theta 1$ ) + A3sin( $\theta 3 - \theta 1$ )}         示为 V1 和A1,2,3 的相位差         率 Uunb [%]         5位         0.00% ~ 100.00%         3P3W, 3P4W         IEC61000-4-30 标准         测试波形 50/60Hz, 正弦波: ±0.3%         (IEC61000-4-30 的试验中 0~5% 范围)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 显示范围<br>演算公式 $An = \sqrt{A1 + A}$ * 01,2,3 分别表 包压不平衡 显示位数 显示范围 接线 测试方法 精确度 演算公式                           | 与电流有效值相同         A2 cos( $\theta 2 - \theta 1$ ) + A3 cos( $\theta 3 - \theta 1$ )} <sup>2</sup> + {A2 sin( $\theta 2 - \theta 1$ ) + A3 sin( $\theta 3 - \theta 1$ )}         示为 V1 和A1,2,3 的相位差         牽 Uunb [%]         5 位         0.00% ~ 100.00%         3P3W, 3P4W         IEC61000-4-30 标准         测试波形 50/60Hz, 正弦波: ±0.3%         (IEC61000-4-30 的试验中 0~5 % 范围)         Vumb = $\sqrt{\left(\frac{1 - \sqrt{(3 - 6\beta)}}{1 + \sqrt{(3 - 6\beta)}}\right)} \times 100$ $\beta = \frac{V_{12}^4 + V_{23}^4 + V_{31}^4}{(V_{12}^2 + V_{23}^2 + V_{31}^2)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 显示范围<br>演算公式<br>An=√{A1+A<br>*01,2,3 分别表<br>也压不平衡<br>显示位数<br>显示范围<br>接线<br>测试方法<br>精确度<br>演算公式            | 与电流有效值相同<br>$A2\cos(\theta 2 - \theta 1) + A3\cos(\theta 3 - \theta 1)$ <sup>2</sup> + $\{A2\sin(\theta 2 - \theta 1) + A3\sin(\theta 3 - \theta 1)\}$<br>示为 V1 和A1,2,3 的相位差<br>率 Uunb [%]<br>5 位<br>0.00% ~ 100.00%<br>3P3W, 3P4W<br>IEC61000-4-30 标准<br>测试波形 50/60Hz, 正弦波: ±0.3%<br>(IEC61000-4-30 的试验中 0~ 5 % 范围)<br>$Vumb = \sqrt{\left(\frac{1 - \sqrt{(3 - 6\beta)}}{1 + \sqrt{(3 - 6\beta)}}\right)} \times 100$ $\beta = \frac{V_{12}^4 + V_{23}^4 + V_{31}^4}{(V_{12}^2 + V_{23}^2 + V_{31}^2)^2}$<br>* 使用谐波电压的 1 次成分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 页目              | KEW                                                                                                                                                                                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 电流不平衡率          | Aunb [%]                                                                                                                                                                                                                                                                                   |
| 显示位数            | 5位                                                                                                                                                                                                                                                                                         |
| 显示范围            | 0.00% ~ 100.00%                                                                                                                                                                                                                                                                            |
| 接线              | 3P3W, 3P4W                                                                                                                                                                                                                                                                                 |
| 演算公式            | $Iumb = \sqrt{\left(\frac{1 - \sqrt{(3 - 6\beta)}}{1 + \sqrt{(3 - 6\beta)}}\right)} \times 100 \qquad \beta = \frac{A_{12}^4 + A_{23}^4 + A_{31}^4}{\left(A_{12}^2 + A_{23}^2 + A_{31}^2\right)^2}$                                                                                        |
|                 | * 使用谐波电压的 1 次成分                                                                                                                                                                                                                                                                            |
|                 | * 3P4W 系统中,相电流变换为线间电流后演算                                                                                                                                                                                                                                                                   |
|                 | $A_{12} = A_1 - A_2, A_{23} = A_2 - A_3, A_{31} = A_3 - A_1$                                                                                                                                                                                                                               |
| 进相电容            |                                                                                                                                                                                                                                                                                            |
| 显示位数            | 4 位, 单位: nF, μF, mF, kvar                                                                                                                                                                                                                                                                  |
| 显示范围            | 0.000nF - 9999F, 0.000kvar - 9999kvar                                                                                                                                                                                                                                                      |
|                 | $C_{C} = P_{C} \times \left( \sqrt{\frac{1}{PF_{C}^{2}} - 1} - \sqrt{\frac{1}{PF_{C_{-}T \operatorname{arget}}^{2}} - 1} \right) [k \operatorname{var}]$ $= \frac{P_{C} \times 10^{9}}{2} \times \left( \sqrt{\frac{1}{PF_{-}^{2}} - 1} - \sqrt{\frac{1}{PF_{-}^{2}} - 1} \right) [\mu F]$ |
|                 | $\mathcal{I}_{c} \mathcal{I}_{c} \times V_{c}$ ( $\mathcal{V}_{PF_{c}} \mathcal{V}_{PF_{c_{T} \operatorname{arg}et}}$ )<br>$C_{c}$ : 必须改善的电容量<br>$P_{c}$ : 负荷电力(有功电力) [kW]<br>f : 频率                                                                                                       |
|                 | V <sub>c</sub> ∶R.m.s. 电压值                                                                                                                                                                                                                                                                 |
|                 | PFc : 所测试的 PF                                                                                                                                                                                                                                                                              |
|                 | <i>PF<sub>c_Target</sub></i> : 改善后的功率 (目标)                                                                                                                                                                                                                                                 |
|                 | <b>c</b> : 测试通道                                                                                                                                                                                                                                                                            |
| 1P2W-1 ~ 4      | $C_1, C_2, C_3, C_4, C_{sum} = C_1 + C_2 + C_3 + C_4$                                                                                                                                                                                                                                      |
| 1P3W(3P3W)-1    | $C_1, C_2, C_{sum1} = C_1 + C_2$                                                                                                                                                                                                                                                           |
| ~ 2             | C <sub>1</sub> , C <sub>2</sub> , C <sub>sum2</sub> =C <sub>3</sub> +C <sub>4</sub>                                                                                                                                                                                                        |
|                 | C <sub>sum</sub> =C <sub>sum1</sub> + C <sub>sum2</sub>                                                                                                                                                                                                                                    |
| 2021/20(2041/1) |                                                                                                                                                                                                                                                                                            |

| W6315          | 综合测试项目                                                                                         |
|----------------|------------------------------------------------------------------------------------------------|
| 综合测试项目         |                                                                                                |
| 消耗电力 (P≥       | <b>_0</b> 时)                                                                                   |
| 有功电量+WF        | P [Wh]                                                                                         |
| 显示位数           | 6位,单位: m, k, M, G, T (与+ <i>WS</i> <sub>一致</sub> )                                             |
| 显示范围           | 0.0000mWh - 9999.99TWh (与 + $W\!S$ $_{ m - {\mathfrak P}}$ )                                   |
|                | * 超过显示范围时显示"OL"                                                                                |
| 演算公式           | $+WPc = \frac{1}{h} \left( \sum_{i} (+P_{ci}) \right)$                                         |
|                | h: 综合计算时间 (3600 秒), c: 测试通道, i: 数据点 no.                                                        |
| 1P2W-1 ~ 4     | +WP <sub>1</sub> , +WP <sub>2</sub> , +WP <sub>3</sub> , +WP <sub>4</sub> , +WP <sub>sum</sub> |
| 1P3W(3P3W)-1   | $+WP_1$ , $+WP_2$ , $+WP_{sum1}$                                                               |
| ~ 2            | $+WP_3$ , $+WP_4$ , $+WP_{sum2}$                                                               |
|                | +WP <sub>sum</sub>                                                                             |
| 3P3W3A(3P4W)   | $+WP_1$ , $+WP_2$ , $+WP_3$ , $+WP_{sum}$                                                      |
| 视在电量 +W        | /S [VAh]                                                                                       |
| 显示位数           | 6 位, 单位 m, k, M, G, T (与 + <i>WS</i> <sub>一致</sub> )                                           |
| 显示范围           | 0.0000mVAh - 9999.99TVAh (与+ $WS$ $_{_{{3}}}$ )                                                |
|                | * 超过显示范围时显示"OL"                                                                                |
| 演算公式           | $+WSc = \frac{1}{h} \left( \sum_{i} \left( S_{ci} \right) \right)$                             |
|                | h:综合计算时间(3600秒), c:测试通道, i:数据点 no.                                                             |
| 1P2W-1 ~ 4     | +WS <sub>1</sub> , +WS <sub>2</sub> , +WS <sub>3</sub> , +WS <sub>4</sub> , +WS <sub>sum</sub> |
| 1P3W(3P3W)-1~2 | +WS1, +WS2, +WSsum1                                                                            |
|                | +WS <sub>3</sub> , +WS <sub>4</sub> , +WS <sub>sum2</sub>                                      |
|                | +WS <sub>sum</sub>                                                                             |
| 3P3W3A(3P4W)   | $+WS_1$ , $+WS_2$ , $+WS_3$ , $+WS_{sum}$                                                      |
| 保存项目           | 视在电量值                                                                                          |

| 宗合测试项目        | KEW                                                                | 6315 |
|---------------|--------------------------------------------------------------------|------|
| 无功电量+W        | Q [Varh]                                                           |      |
| 显示位数          | 6 位,单位: m, k, M, G, T (与 + <i>WS</i> <sub>一致</sub> )               |      |
| 显示范围          | 0.00000mvarh - 9999.99Tvarh (与 <i>+WS</i> 致)                       |      |
| <i>运营</i> 八 十 | * 超过显示泡围时显示"OL"                                                    |      |
| <i>澳昇公</i> 式  | $+WQc_{-}c = \frac{1}{h}\left(\sum_{i}(+Q_{ci})\right),$           |      |
|               | 滞后相位<br>+WQi_c = $\frac{1}{h} \left( \sum_{i} (-Q_{ci}) \right)$ . |      |
|               | h:综合计算时间(3600秒), n:系统 No., c:测试通道,                                 |      |
|               | i: 数据点 no. * 滞后相位: Q ≥0 时, 超前相位: Q < 0 时                           |      |
| 1P2W-1 ~ 4    | $+WQ_1$ , $+WQ_2$ , $+WQ_3$ , $+WQ_4$ , $+WQ_{sum}$                |      |
| 1P3W(3P3W)-1  | $+WQ_1$ , $+WQ_2$ , $+WQ_{sum1}$                                   |      |
| ~ 2           | $+WQ_3$ , $+WQ_4$ , $+WQ_{sum2}$                                   |      |
|               | +WQ <sub>sum</sub>                                                 |      |
| 3P3W3A(3P4W)  | $+WQ_1$ , $+WQ_2$ , $+WQ_3$ , $+WQ_{sum}$                          |      |

## 再生电力 (P<0 时)

## <u>有功电量-WP[Wh]</u>

| 显示位数         | 6 位, 单位: m, k, M, G, T (与 + <i>WS</i> 一致)                                                      |
|--------------|------------------------------------------------------------------------------------------------|
| 显示范围         | 0.0000mWh - 9999.99TWh (与 $+WS_{-	ext{g}}$ )                                                   |
|              | * 超过显示范围时显示"OL"                                                                                |
| 演算公式         | $-WPc = \frac{1}{h} \left( \sum_{i} \left( -P_{ci} \right) \right)$                            |
|              | h:综合计算时间(3600秒), c:测试通道, i:数据点 no.                                                             |
| 1P2W-1 ~ 4   | -WP <sub>1</sub> , -WP <sub>2</sub> , -WP <sub>3</sub> , -WP <sub>4</sub> , -WP <sub>sum</sub> |
| 1P3W(3P3W)-1 | -WP <sub>1</sub> , -WP <sub>2</sub> , -WP <sub>sum1</sub>                                      |
| ~ 2          | -WP <sub>3</sub> , -WP <sub>4</sub> , -WP <sub>sum2</sub>                                      |
|              | -WP <sub>sum</sub>                                                                             |
| 3P3W3A(3P4W) | -WP <sub>1</sub> , -WP <sub>2</sub> , -WP <sub>3</sub> , -WP <sub>sum</sub>                    |

| □            |                                                                                                |
|--------------|------------------------------------------------------------------------------------------------|
|              |                                                                                                |
| 显示范围         | 0.00000mVAh - 9999.99TVAh (与 +WS)                                                              |
|              | * 超过显示范围时显示"OL"                                                                                |
| 演算公式         | $-WSc = \frac{1}{h} \left( \sum_{i} (S_{ci}) \right)$                                          |
|              | h: 综合计算时间(3600秒), c: 测试通道, i: 数据点 no.                                                          |
| 1P2W-1 ~ 4   | -WS <sub>1</sub> , -WS <sub>2</sub> , -WS <sub>3</sub> , -WS <sub>4</sub> , -WS <sub>sum</sub> |
| 1P3W(3P3W)-1 | -WS <sub>1</sub> , -WS <sub>2</sub> , -WS <sub>sum1</sub>                                      |
| ~2           | -WS <sub>3</sub> , -WS <sub>4</sub> , -WS <sub>sum2</sub>                                      |
|              | -WS <sub>sum</sub>                                                                             |
| 3P3W3A(3P4W) | -WS1, -WS2, -WS3, -WSsum                                                                       |
| 无功电量 -W      | Q [Varh]                                                                                       |
| 显示位数         | 6-digit, Unit: m, k, M, G, T (与 $+W\!S_{-\mathrm{3}}$ )                                        |
| 显示范围         | 0.00000mvarh - 9999.99Tvarh (与 $+WS$ $_{-致)}$                                                  |
|              | * 超过显示范围时显示"OL"                                                                                |
| 演算公式         | 超前相位<br>-WQc_c= $\frac{1}{h}\left(\sum_{i}(+Q_{ci})\right)$ ,                                  |
|              | 滞后相位<br>-WQi_c = $\frac{1}{h} \left( \sum_{i} (-Q_{ci}) \right)$                               |
|              | h:综合计算时间(3600秒), n:系统 No., c:测试通道,                                                             |
|              | i: 数据点 no. * 滞后相位: Q ≥0 时, 超前相位: Q < 0 时                                                       |
| 1P2W-1~4     | -WQ1, -WQ2, -WQ3, -WQ4, -WQsum                                                                 |
| 1P3W(3P3W)-1 | -WQ <sub>1</sub> , -WQ <sub>2</sub> , -WQ <sub>sum1</sub>                                      |
| ~ 2          | -WQ3 , -WQ4 , -WQ <sub>sum2</sub>                                                              |
|              | -WQ <sub>sum</sub>                                                                             |
| 3P3W3A(3P4W) | $-WQ_1$ , $-WQ_2$ , $-WQ_3$ , $-WQ_{sum}$                                                      |
| 宗合计算时间       |                                                                                                |
| 显示范围         | 00:00:00 (0 秒) - 99:59:59 (99 时 59 分 59 秒),                                                    |
|              | 0100:00 - 99999:59 (9999 时 59 分),                                                              |
|              | 010000 - 999999 (999999 时)*显示内容依次迁移                                                            |
| 则试项目<br>➡ ━━━━━━━━━━━━━ | KEV                                                                                  |  |
|-------------------------|--------------------------------------------------------------------------------------|--|
| <b>新</b> 不测试坝           |                                                                                      |  |
| 日怀徂 (DE                 | IVI <sub>Target</sub> )                                                              |  |
| 显示位数                    | 4位                                                                                   |  |
| 显示单位                    | m, k, M, G, T                                                                        |  |
| 显示范围                    | 0.000mW(VA) - 999.9TW(VA) *固定为设定值                                                    |  |
| ত测值 (DE                 | M <sub>Guess</sub> )                                                                 |  |
| 显示位数                    | 6位                                                                                   |  |
| 显示单位                    | m, k, M, G, T (与 DEM <sub>Target</sub> 一致 )                                          |  |
| 显示范围                    | 0.0000mW(VA) - 99999.9TW(VA)                                                         |  |
|                         | * 小数点位置与 DEM <sub>Target</sub> 一致                                                    |  |
|                         | * 超过显示范围时显示"OL"                                                                      |  |
| 演算公式                    | DEM <sub>Guess</sub> = ΣDEM×测试周期时间                                                   |  |
|                         | 测试开始到现在所经过的时间                                                                        |  |
| 现在值, 需表                 | 求测试值 (ΣDEM)                                                                          |  |
| 显示位数                    | 6位,单位: m, k, M, G, T (与 DEM <sub>Target</sub> 一致)                                    |  |
| 显示单位                    |                                                                                      |  |
| 显示范围                    | 0.0000mW(VA) - 99999.9TW(VA)                                                         |  |
|                         | * 小数点位置与 DEM <sub>Taroet</sub> 一致                                                    |  |
|                         | * 超过显示范围时显示"OL"                                                                      |  |
| 演算公式                    | <i>EDEM=</i><br>(测试开始到现在的 " <i>+WPsum (+WSsum)</i> "的综合值)<br>× <u>1 小时</u><br>测试周期时间 |  |
| 负荷率                     |                                                                                      |  |
| 显示位数                    | 6位                                                                                   |  |
| 显示范围                    | 0.00 - 9999.99% * 超过显示范围时显示"OL"                                                      |  |
| 演算公式                    | $\Sigma DEM / DEM_{Terget}$                                                          |  |
| 页测                      |                                                                                      |  |
| 显示位数                    | 6位                                                                                   |  |
| 显示范围                    | 0.00 - 9999.99% * 超过显示范围时显示"OL"                                                      |  |
| 演算公式                    | DEM Grass /                                                                          |  |

| 谐波测记  | 试项目        |                         |
|-------|------------|-------------------------|
| 测试系统  | :数字        | 式 PLL 同步方式              |
| 测试方法  | : 加上       | 紧邻所解析谐波的整次数的间谐波成分后显示    |
| 有效频率范 | 围 : 40 - 7 | 70Hz                    |
| 解析次数  | : 1 – 5    | 0 次                     |
| 窗口宽度  | : 50Hz     | 时 10 个周期, 60Hz 时 12 个周期 |
| 窗口类型  | : 矩形       |                         |
| 解析数据数 | : 2048     | 点                       |
| 解析率   | : 50Hz     | /60Hz: 1 次/200m 秒       |

## 谐波电压有效值 Vk [Vrms]

| 量程         | 与电压有效值相同                                                                                                                                                                                                                                        |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 显示位数       | 与电压有效值相同                                                                                                                                                                                                                                        |  |
| 显示范围       | 与电压有效值相同                                                                                                                                                                                                                                        |  |
|            | * 含有率 0.0% - 100.0%,相对于基本波的比例                                                                                                                                                                                                                   |  |
| 测试系统       | IEC61000-4-30, IEC61000-4-7, IEC61000-2-4 标准                                                                                                                                                                                                    |  |
|            | 解析窗口宽度: 50/60Hz 时 10/12 个周期                                                                                                                                                                                                                     |  |
|            | 测试值包含了紧邻解析谐波次数的间谐波成分                                                                                                                                                                                                                            |  |
| 精确度        | 600V 量程的 10% - 100%的输入范围中 IEC61000-2-4 等级 3 标准的精确度                                                                                                                                                                                              |  |
|            | 相对于公称电压 100V 以上, 3% 以上 :±10%rdg                                                                                                                                                                                                                 |  |
|            | 相对于公称电压 100V 以上,不满 3% :公称电压±0.3%                                                                                                                                                                                                                |  |
|            | 1000V 量程 : ±0.2%rdg±0.2%f.s.                                                                                                                                                                                                                    |  |
| 演算公式       | $V_{ck} = \sqrt{\sum_{n=-1}^{1} (V_c(10k+n)r)^2 + (V_c(10k+n)i)^2}$ 含有率 $= \frac{V_{ck} \times 100}{V_{c1}}$<br>c: 测试通道, k: 谐波的次数<br>Vr: 电压 FFT 变换后的实数成分<br>Vi: 电压 FFT 变换后的虚数成分<br>演算公式的测试周期是 10 个周期,如果是 12 个周期的话,公式中的"10k+n" 要替<br>换成 "12k+n". |  |
| 1P2W-1~ 4  | V <sub>1k</sub>                                                                                                                                                                                                                                 |  |
| 1P3W-1 ~ 2 | V <sub>1k</sub> , V <sub>2k</sub>                                                                                                                                                                                                               |  |
| 3P3W-1~ 2  | 线间电压 V <sub>12k</sub> , V <sub>32k</sub>                                                                                                                                                                                                        |  |
| 3P3W3A     | 线间电压 V12k, V23k, V31k                                                                                                                                                                                                                           |  |
| 3P4W       | V <sub>1k</sub> , V <sub>2k</sub> , V <sub>3k</sub>                                                                                                                                                                                             |  |

| 皆波电流有       | 效值 Ak [Arms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 量程          | 与电流有效值相同                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 显示位数        | 与电流有效值相同                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 显示范围        | 与电流有效值相同                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|             | *含有率 0.0% - 100.0%,相对于基本波的比例                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 测试系统        | IEC61000-4-7, IEC61000-2-4 标准<br>网托穷口穿座                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|             | 附付囱口见及: 50/00□Z 的 10/12 行向朔<br>测试值句含了紧绍解析谐波次数的间谐波成分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 精确度         | 测试量程的 10% - 100%的输入范围中 IEC61000-2-4 等级 3 标准的精确度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| THEMP       | 量程最大值的 10% 以上 : ±10%rdg + 传感器精确度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             | 量程最大值的 10% 以下 : 量程最大值的±1.0% +传感器精确度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 演算公式        | $A_{ck} = \sqrt{\sum_{n=-1}^{1} (A_c (10k+n)r)^2 + (A_c (10k+n)i)^2}  \text{含有率}  = \frac{A_{ck} \times 100}{A_{c1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|             | c:测试通道 k: 谐波的次数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|             | r: 电压 FFT 变换后的实数成分 i: 电压 FFT 变换后的虚数成分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|             | 演算公式的测试周期是 10 个周期,如果是 12 个周期的话,公式中的"10k+n"要                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|             | 换成 "12k+n"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 皆波电力 PI     | k [W]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 量程          | 与有功电力相同                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 显示位数        | 与有功电力相同                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 显示范围        | 与有功电力相同                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|             | *含有率 0.0% - 100.0%, 相对于基本波的比例                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 测试系统        | IEC61000-4-7 标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 精确度         | ±0.3%rdg±0.2%f.s.+ 传感器精确度 (PF 1, 正弦波: 50/60Hz) (Sum 值是所使用通道的综合值 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 演算公式        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|             | $Pc_{k} = V_{c(10k)r} \times A_{c(10k)r} - V_{c(10k)i} \times A_{c(10k)l} \qquad \exists \exists \exists \exists a = \frac{1}{2} = \frac{1}{2}$ |  |
|             | c: 测试通道, k: 谐波的次数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|             | r: 电压 FFT 变换后的实数成分, i: 电压 FFT 变换后的虚数成分<br>上述演算公式的测试周期是 10 个周期,如果是 12 个周期的话,公式中的"10k"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 102\// 1 /  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1D3\N/ 1 2  | $r_{1k} = 2k, r_{2k} = 3k, r_{4k} = sumk - r_{1k} + r_{2k} + r_{3k} + r_{4k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 11 JW-1 ~ Z |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|             | <i>F</i> 3 <i>k</i> , <i>F</i> 4 <i>k</i> , <i>F</i> sum2 <i>k</i> = <i>F</i> 3 <i>k</i> + <i>F</i> 4 <i>k</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 00000       | rsumk=rsum1k+rsum2k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 3P3VV-1~ 2  | $P_{1k}, P_{2k}, P_{sum1k} = P_{1k} + P_{2k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|             | $P_{3k}, P_{4k}, P_{sum2k} = P_{3k} + P_{4k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|             | Psumk=Psum1k+Psum2k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 3P3W3A      | 相电压 P <sub>1k</sub> :V <sub>1</sub> = (V <sub>12</sub> -V <sub>31</sub> )/3, P <sub>2k</sub> :V <sub>2</sub> = (V <sub>23</sub> -V <sub>12</sub> )/3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|             | $P_{3k}: V_3 = (V_{31}-V_{23})/3, P_{sumk} = P_{1k}+P_{2k}+P_{3k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 3P4W        | $P_{1k}, P_{2k}, P_{3k}, P_{sumk} = P_{1k} + P_{2k} + P_{3k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

| 6315        | 谐波测i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 皆波无功电力      | Qk [var] (仅适用于内部演算)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 演算公式        | $Pc_k = V_{c(10k)r} \times A_{c(10k)i} - V_{c(10k)i} \times A_{c(10k)r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             | c: 测试通道, k: 谐波的次数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|             | r: 电压 FFT 变换后的实数成分, i: 电压 FFT 变换后的虚数成分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|             | 上述演算公式的测试周期是 10 个周期, 如果是 12 个周期的话, 公式中的"10k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|             | 替换成 "12k"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1P2W-1 ~ 4  | $Q_{1k}Q_{2k}, Q_{3k}, Q_{4k}, Q_{sumk} = Q_{1k} + Q_{2k} + Q_{3k} + Q_{4k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 1P3W-1 ~ 2  | $Q_{1k}, Q_{2k}, Q_{sum1k} = Q_{1k} + Q_{2k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|             | $Q_{3k}, Q_{4k}, Q_{sum2k} = Q_{3k} + Q_{4k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|             | Qsumk=Qsum1k+Qsum2k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 3P3W-1 ~ 2  | $Q_{1k}, Q_{2k}, Q_{sum1k} = Q_{1k} + Q_{2k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|             | $Q_{3k}, Q_{4k}, Q_{sum2k} = Q_{3k} + Q_{4k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|             | Q <sub>sumk</sub> =Q <sub>sum1k</sub> +Q <sub>sum2k</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 3P3W3A      | 相电压 Q <sub>1k</sub> :V <sub>1</sub> = (V <sub>12</sub> -V <sub>31</sub> )/3, Q <sub>2k</sub> :V <sub>2</sub> = (V <sub>23</sub> -V <sub>12</sub> )/3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|             | $Q_{3k}:V_3 = (V_{31}-V_{23})/3, Q_{sumk}=Q_{1k}+Q_{2k}+Q_{3k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 3P4W        | $Q_{1k}$ , $Q_{2k}$ , $Q_{3k}$ , $Q_{sumk}=Q_{1k}+Q_{2k}+Q_{3k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 综合谐波电压      | 失真率 THDVF [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 显示位数        | 4位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 显示范围        | 0.0% - 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 演算公式        | 50 (== )2 = c: 测试通道                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|             | $\sqrt{\sum_{k=2}^{\infty} (V_{ck})^{r} \times 100}$ V: 谐波电压                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|             | $THDVF_c = \frac{V_{c1}}{V_{c1}}$ k: 谐波的次数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1P2W-1 ~ 4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1P3W-1 ~ 2  | THDVF1, THDVF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 3P3W-1 ~ 2  | Line voltage THDVF <sub>12</sub> , THDVF <sub>32</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 3P3W3A      | Line voltage THDVF <sub>12</sub> , THDVF <sub>23</sub> , THDVF <sub>31</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 3P4W        | THDVF1, THDVF2, THDVF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 综合谐波电流      | 天具率 THDAF [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 显示位数        | 4位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 显示范围        | 0.0% - 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| <b>演算公式</b> | c: 测试通道 THDAF <sub>1</sub> , THDAF <sub>2</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|             | $\int \sum_{k=2} (Ack) \times 100 \qquad \text{THDAF}_{3}, \text{THDAF}_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|             | $THDAFc = \frac{1}{A_{c1}} A: $ is the image of |  |
|             | k: 谐波的次数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

| <u>  试项目</u><br>空人:比油由[ | KE<br>王生百亥 r TUD\/D [0/]                                                                                                                                                                                                    |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                         |                                                                                                                                                                                                                             |  |
| 显示范围                    | 4 1 <u>2</u><br>0.0% - 100.0%                                                                                                                                                                                               |  |
| 演算公式                    | $THDVRc = \frac{\sqrt{\sum_{k=2}^{50} (V_{ck})^2 \times 100}}{\sqrt{\sum_{k=1}^{50} (V_{ck})^2}}$ c: 测试通道<br>V: 谐波电压<br>k: 谐波的次数                                                                                            |  |
| 1P2W-1 ~ 4              | THDVR <sub>1</sub>                                                                                                                                                                                                          |  |
| 1P3W-1 ~ 2              | THDVR <sub>1</sub> , THDVR <sub>2</sub>                                                                                                                                                                                     |  |
| 3P3W-1 ~ 2              | Line voltage THDVR <sub>12</sub> , THDVR <sub>32</sub>                                                                                                                                                                      |  |
| 3P3W3A                  | Line voltage THDVR <sub>12</sub> , THDVR <sub>23</sub> , THDVR <sub>31</sub>                                                                                                                                                |  |
| 3P4W                    | THDVR <sub>1</sub> , THDVR <sub>2</sub> , THDVR <sub>3</sub>                                                                                                                                                                |  |
| 宗合谐波电浴                  | 充失真率 THDAR [%]                                                                                                                                                                                                              |  |
| 显示位数                    | 4位                                                                                                                                                                                                                          |  |
| 显示范围                    | 0.0% - 100.0%                                                                                                                                                                                                               |  |
| <b>海</b> 算公式            | $THDAR_{c} = \frac{\sqrt{\sum_{k=2}^{50} (A_{ck})^{2} \times 100}}{\sqrt{\sum_{k=1}^{50} (A_{ck})^{2}}}$ c: 测试通道. THDAR <sub>1</sub> , THDAR <sub>2</sub><br>THDAR <sub>3</sub> , THDAR <sub>4</sub><br>A: 谐波电流<br>k: 谐波的次数 |  |
| 皆波电压相伯                  | 立角 θVk [deg]                                                                                                                                                                                                                |  |
| 显示位数                    | 4 位                                                                                                                                                                                                                         |  |
| 显示范围                    | $0.0^{\circ} \sim \pm 180.0^{\circ}$                                                                                                                                                                                        |  |
| 演算公式                    | $\theta V_{ck} = \tan^{-1} \left\{ \frac{V_{ckr}}{-V_{cki}} \right\}$<br>c: 测试通道<br>V: 谐波电压<br>k: 谐波的次数<br>r: 电压 FFT 变换后的实数成分,<br>i: 电压 FFT 变换后的虚数成分                                                                        |  |
| 1P2W-1 ~ 4              | θV <sub>1k</sub>                                                                                                                                                                                                            |  |
| 1P3W-1 ~ 2              | $\theta V_{1k}, \theta V_{2k}$                                                                                                                                                                                              |  |
| 3P3W-1 ~ 2              | θV <sub>12k</sub> , θV <sub>32k</sub> * 使用线间电压                                                                                                                                                                              |  |
| 3P3W3A                  | θV <sub>12k</sub> , θV <sub>23k</sub> , θV <sub>31k</sub> *使用线间电压.                                                                                                                                                          |  |
| 3P4W                    | $\theta V_{1k}, \theta V_{2k}, \theta V_{3k}$                                                                                                                                                                               |  |

| <u>V6315</u><br>综合谐波由流 |                                                                                                                                                                                                              |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 显示位数                   | 4-digit                                                                                                                                                                                                      |  |
| 显示范围                   | 0.0° ~ ±180.0°                                                                                                                                                                                               |  |
| 演算公式                   | $\theta A_{ck} = \tan^{-1} \left\{ \frac{A_{ckr}}{-A_{cki}} \right\}$ c: 测试通道 $\theta A_{1k}, \theta A_{2k}, \theta A_{3k}, \theta A_{4k}$<br>A: 谐波电流                                                        |  |
|                        | k: 谐波的次数                                                                                                                                                                                                     |  |
|                        | r: 电压 FFT 变换后的实数成分                                                                                                                                                                                           |  |
|                        | i: 电压 FFT 变换后的虚数成分                                                                                                                                                                                           |  |
| 谐波电压电流                 | 相位差 θk [deg]                                                                                                                                                                                                 |  |
| 显示位数                   | 4位                                                                                                                                                                                                           |  |
| 显示范围                   | 0.0° ~ ±180.0°                                                                                                                                                                                               |  |
| 演算公式                   | $\theta_{ck} = \theta_{Ack} - \theta_{Vck}$ с: 测试通道, к: 谐波的次数                                                                                                                                                |  |
| 1P2W-1 ~ 4             | $\theta_{1k}, \theta_{2k}, \theta_{3k}, \theta_{4k}, \ \theta_{sumk} = \tan^{-1}\left\{\frac{Q_{sumk}}{P_{sumk}}\right\}$                                                                                    |  |
| 1P3W(3P3W)-1<br>~ 2    | $\theta_{1k}, \theta_{2k},  \theta_{sum1k} = \tan^{-1} \left\{ \frac{Q_{sum1k}}{P_{sum1k}} \right\}$<br>$\theta_{3k}, \theta_{4k},  \theta_{sum2k} = \tan^{-1} \left\{ \frac{Q_{sum2k}}{P_{sum2k}} \right\}$ |  |
|                        |                                                                                                                                                                                                              |  |
|                        | $\theta_{sumk} = \tan^{-1}\left\{\frac{Q_{sumk}}{P_{sumk}}\right\}$                                                                                                                                          |  |
| 3P3W3A(3P4W)-1         | $\theta_{1k}, \theta_{2k}, \theta_{3k}, \ \theta_{sumk} = \tan^{-1} \left\{ \frac{Q_{sumk}}{P_{sumk}} \right\}$                                                                                              |  |

| 2. 反量测试项目    |                                                                               | KEW6                              |
|--------------|-------------------------------------------------------------------------------|-----------------------------------|
| 电能质量测试       | 式项目                                                                           |                                   |
| 电压瞬变         |                                                                               |                                   |
| 测试方式         | 约 40.96ksps (间隔 2.4us) 无间隙地判断事件的有无 (50Hz/                                     | 60Hz)                             |
| 显示位数         | 4位                                                                            |                                   |
| 有效输入范围       | 50V - 2200V (DC)                                                              |                                   |
| 显示范围         | 50V - 2200V (DC)                                                              |                                   |
| 精确度          | 0.5%rdg * 1000V (DC)上                                                         |                                   |
| 输入阻抗         | 约 1.67MΩ                                                                      |                                   |
| 界限值          | 指定绝对值峰值电压                                                                     |                                   |
| 检出通道(ch)     |                                                                               |                                   |
| 1P2W-1~ 4    | V <sub>1</sub>                                                                |                                   |
| 1P3W-1 ~ 2   | $V_1, V_2$                                                                    |                                   |
| 3P3W-1~ 2    | Line voltage V <sub>12</sub> , V <sub>32</sub>                                |                                   |
| 3P3W3A       | Line voltage $V_{12}, V_{23}, V_{31}$                                         |                                   |
| 3P4W         | $V_{1}, V_{2}, V_{3}$                                                         |                                   |
| 电压上升, 7      | <b>下降,瞬停</b>                                                                  |                                   |
| 量程           | 与电压有效值相同                                                                      |                                   |
| 显示位数         | 与电压有效值相同                                                                      |                                   |
| 有效输入范围       | 与电压有效值相同                                                                      |                                   |
| 显示范围         | 与电压有效值相同                                                                      |                                   |
| 峰值因数         | 与电压有效值相同                                                                      |                                   |
| 输入阻抗         | 与电压有效值相同                                                                      |                                   |
| 界限值          | 按公称电压的%指定                                                                     |                                   |
| 测试方式         | IEC61000-4-3 标准                                                               |                                   |
|              | 按每半波重叠的1个波形计算有效值                                                              |                                   |
|              | 多相系统的上升,下降的判定条件:                                                              |                                   |
|              | 在任何一个通道开始事件时开始,在所有通道上结束事件时                                                    | 寸结束                               |
|              | 多相系统的瞬停的判定条件:                                                                 |                                   |
| <u>柴花 庄</u>  | 在所有地理上开始事件时开始,在任何一个地理上结束事件                                                    | 午时结束<br>按中国: <b>1.0</b> 0/        |
| <b>悄</b> 啪 送 | 10%-150%(相対す 100V 以上公称电压) : 公称<br>上述范围之外 ···································· | 小巴 <b>庄±1.U%</b><br>1%rda+0.4%f e |
|              | 工业泡回之外 $$                                                                     | +/61Ug±0.4/61.3.<br>·周期内          |
| 检出通道(ch)     |                                                                               |                                   |
| 1P2W-1 ~ 4   | V1                                                                            |                                   |
| 1P3W-1 ~ 2   | V1 V2                                                                         |                                   |
| 3P3W-1 ~ 2   | 线间电压 V12 V32                                                                  |                                   |
| 3P3W3A       | 线间电压 V <sub>12</sub> , V <sub>23</sub> , V <sub>31</sub>                      |                                   |
| 3P4W         | V1 V2 V3                                                                      |                                   |

| KEW6315 |                              | 电能质量测试项目 |
|---------|------------------------------|----------|
| 突入电流    |                              |          |
| 量程      | 与电流有效值相同                     |          |
| 显示位数    | 与电流有效值相同                     |          |
| 有效输入范围  | 与电流有效值相同                     |          |
| 显示范围    | 与电流有效值相同                     |          |
| 峰值因数    | 与电流有效值相同                     |          |
| 输入阻抗    | 与电流有效值相同                     |          |
| 界限值     | 按量程的%指定                      |          |
| 测试方式    | 按每半波重叠的1个波形计算有效值             |          |
| 精确度     | ±0.4%rdg±0.4%f.s.+ 传感器精确度    |          |
| 检出通道    | $A_{1}, A_{2}, A_{3}, A_{4}$ |          |
| (ch)    |                              |          |

| 〔 <u>量测试项目</u>                                       | KE                                                                                                                                                                                                          |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 冈变                                                   | 7                                                                                                                                                                                                           |  |
| 显示项目                                                 | Pst 剩余时间:到计算出下个 Pst 为止的剩余时间                                                                                                                                                                                 |  |
|                                                      | V: 每个半波的电压有效值,1 秒间的平均值                                                                                                                                                                                      |  |
|                                                      | Pst(1 分钟): 1 分钟内的闪变值(Pst 参考值)                                                                                                                                                                               |  |
|                                                      | Pst: 短期内(10分钟)闪变的严重性                                                                                                                                                                                        |  |
|                                                      | Plt: 长期内(2小时)闪变的严重性                                                                                                                                                                                         |  |
|                                                      | 最大 Pst: Pst 最大值和更新时间                                                                                                                                                                                        |  |
|                                                      | 最大 Plt: Plt 最大值和更新时间                                                                                                                                                                                        |  |
|                                                      | Pst(1 分钟) 最新 120 分钟趋势图                                                                                                                                                                                      |  |
|                                                      | Plt 最新 600 小时趋势图                                                                                                                                                                                            |  |
| 显示位数                                                 | 4 位, 分辨率: log 0.001 - 6400 P.U. 1024 格                                                                                                                                                                      |  |
| 斜坡模式                                                 | 230V/220V/120V/100V                                                                                                                                                                                         |  |
| 测试方式                                                 | IEC61000-4-30 和 IEC61000-4-15 Ed.2 标准                                                                                                                                                                       |  |
| 精确度                                                  | Pst (最大. 20):±10%rdg ,符合 IEC61000-4-15 Ed.2 Class F3.的试验方法                                                                                                                                                  |  |
| 演算公式                                                 |                                                                                                                                                                                                             |  |
| Pst(1min) <sub>c</sub> , Ps                          | $t_{c}=$                                                                                                                                                                                                    |  |
| $\sqrt{0.0314}$ ×                                    | $\times P_{0.1} + 0.0525 \times P_{1S} + 0.0657 \times P_{3S} + 0.28 \times P_{10S} + 0.08 \times P_{50S}$                                                                                                  |  |
| V <sub>1S</sub> =(P <sub>0.7</sub> +P <sub>1</sub> + | -P <sub>1.5</sub> )/3 , V <sub>3S</sub> =(P <sub>2.2</sub> +P <sub>3</sub> +P <sub>4</sub> )/3 , V <sub>10S</sub> =(P <sub>6</sub> +P <sub>8</sub> +P <sub>10</sub> +P <sub>13</sub> +P <sub>17</sub> )/5 , |  |
| V50S=(P30+P50                                        | 0+P <sub>80</sub> )/3 c: 测试通道                                                                                                                                                                               |  |
| 从 10 分钟*测词                                           | 微据获取按非线形分类被归类为 1024 等级(0 - 6400P.U.)的累积概率函数(CPF)                                                                                                                                                            |  |
| 然后由非线形轴                                              | ↓助法进行修止后使用修改后的数值演算<br>▲ 八钟                                                                                                                                                                                  |  |
| . * PSt(1 分钟):<br>「                                  |                                                                                                                                                                                                             |  |
| .                                                    | $\sum^{n} Pst_i^3$                                                                                                                                                                                          |  |
| $Plt = 3 \times 1$                                   | ←                                                                                                                                                                                                           |  |
| $I u_C = 5 \land$                                    | N                                                                                                                                                                                                           |  |
| 1P2W-1 ~ 4                                           | Pst(1分钟)1, Pst1. Plt1                                                                                                                                                                                       |  |
| 1P3W-1 ~ 2                                           | Pst(1分钟)1. Pst1. Plt1. Pst(1分钟)2. Pst2. Plt2                                                                                                                                                                |  |
| 3P3W-1 ~ 2                                           | 线间电压 Pst(1分钟) <sub>12</sub> , Pst <sub>12</sub> , Plt <sub>12</sub> , Pst(1分钟) <sub>32</sub> , Pst <sub>32</sub> , Plt <sub>32</sub>                                                                        |  |
| 3P3W3A                                               | 线间电压 Pst(1分钟)12 Pst12 Plt12 Pst(1分钟)23 Pst23                                                                                                                                                                |  |
|                                                      | Plt <sub>23</sub> , Pst(1 分钟) <sub>31</sub> , Pst <sub>31</sub> , Plt <sub>31</sub>                                                                                                                         |  |
| 3P4W                                                 | Pst/1分钟)。Psta Plta Pst/1分钟)。Psta Plta Pst/1分钟)。Psta Plta                                                                                                                                                    |  |

# 10.4 钳形传感器规格

| 额定电流       [最大         输出电压       0         潮试范围       [最大         测试范围       [         精确度       [         (正弦波输入)       [         相位特性       [         精确度保证       [         温湿度范围       [         使用温湿度范围       [         最大输入允许范围       [         輸出阻抗       [         使用环境       [         安全规格       [ | AC 5Arms<br>一<br>一<br>一<br>一<br>本<br>二<br>の<br>で<br>し<br>本<br>こ<br>の<br>で<br>し<br>、<br>本<br>に<br>の<br>し<br>、<br>、<br>の<br>し<br>、<br>、<br>の<br>し<br>、<br>、<br>の<br>し<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>、<br>の<br>、<br>、<br>、<br>の<br>、<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>、<br>、<br>の<br>、<br>、<br>、<br>、<br>、<br>、<br>の<br>、<br>、<br>、<br>、<br>、<br>の<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>の<br>、<br>、<br>、<br>、<br>、<br>、<br>の<br>、<br>の<br>、<br>、<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>、<br>、<br>、<br>の<br>、<br>、<br>、<br>、<br>の<br>、<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>の<br>、<br>、<br>、<br>、<br>の<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、 | AC 100Arms<br>(141A 峰值)           AC 0- 500mV           AC0 - 500mV           (AC500mV/AC100A):5mV/A           AC0 - 100Arms           ±0.5%rdg±0.1mV (50/60Hz)           ±1.0%rdg±0.2mV (40Hz - 1kHz)           ±2.0°Ukp<br>(1 - 100A/45 - 65Hz)           3±5°C, 相对湿度 85% 以下(无结露           0 - 50°C, 相对湿度 85%以下(无结露           0 - 60°C, 相对湿度 85%以下(无结露           0 - 60°C, 相对湿度 85%以下(无结露 | AC 200Arms<br>(283A 峰值)<br>AC0 - 500mV<br>(AC 500mV/AC200A):2.5mV/A<br>AC0 - 200Arms<br>(2 - 200A/45 - 65Hz)<br>(3)            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 額定电流     [最大       输出电压     0       「最大     0       测试范围     0       潮试范围     0       精确度     0       化式弦波输入)     1       相位特性     0       精确度保证     0       温湿度范围     0       使用温湿度范围     0       最大输入允许范围     1       輸出阻抗     0       使用环境     0                                                          | AC 5Arms<br>(额定 AC50Arms(70.7A 峰值))]<br>- 50mV (AC 50mV/AC 5A)<br>AC 500mV/AC50A]:10mV/A<br>AC0 - 50Arms<br><u>+2.0°以内</u><br>(0.5 - 50A/45 - 65Hz)<br>2:<br>0<br>-2:<br>AC50Arms (50/60Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AC 100Arms<br>(141A 峰值)<br>AC0 - 500mV<br>(AC500mV/AC100A):5mV/A<br>AC0 - 100Arms<br>±0.5%rdg±0.1mV (50/60Hz)<br>±1.0%rdg±0.2mV (40Hz - 1kHz)<br>±2.0°以内<br>(1 - 100A/45 - 65Hz)<br>3±5°C,相对湿度 85%以下(无结露<br>0 - 60°C,相对湿度 85%以下(无结露<br>0 - 60°C,相对湿度 85%以下(无结露                                                                                                                              | AC 200Arms<br>(283A 峰值)<br>AC0 - 500mV<br>(AC 500mV/AC200A):2.5mV/A<br>AC0 - 200Arms<br><u>±1.0°以内</u><br>(2 - 200A/45 - 65Hz) |
| 输出电压     0<br>[最大]       测试范围     1       測试范围     1       精确度<br>(正弦波输入)     1       相位特性     1       精确度保证     1       温湿度范围     1       使用温湿度范围     1       最大输入允许范围     1       輸出阻抗     1       使用环境     1                                                                                              | - 50mV (AC 50mV/AC 5A)<br>AC 500mV/AC50A]:10mV/A<br>AC0 - 50Arms<br><u>+2.0°以内</u><br>(0.5 - 50A/45 - 65Hz)<br>2:<br>0<br>-2:<br>AC50Arms (50/60Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AC0 - 500mV<br>(AC500mV/AC100A):5mV/A<br>AC0 - 100Arms<br>±0.5%rdg±0.1mV (50/60Hz)<br>±1.0%rdg±0.2mV (40Hz - 1kHz)<br>±2.0°以内<br>(1 - 100A/45 - 65Hz)<br>3±5°C,相对湿度 85%以下(无结露<br>0 - 60°C,相对湿度 85%以下(无结露<br>0 - 60°C,相对湿度 85%以下(无结露                                                                                                                                                         | AC0 - 500mV<br>(AC 500mV/AC200A):2.5mV/A<br>AC0 - 200Arms<br><u>±1.0°以内</u><br>(2 - 200A/45 - 65Hz)                            |
| 测试范围       精确度<br>(正弦波输入)       相位特性       精确度保证       温湿度范围       使用温湿度范围       保存温湿度范围       最大输入允许范围       输出阻抗       使用环境       安全规格                                                                                                                                                                     | AC0 - 50Arms<br>±2.0°以内<br>(0.5 - 50A/45 - 65Hz)<br>2:<br>0<br>-2:<br>AC50Arms (50/60Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AC0 - 100Arms<br>±0.5%rdg±0.1mV (50/60Hz)<br>±1.0%rdg±0.2mV (40Hz - 1kHz)<br>±2.0°以内<br>(1 - 100A/45 - 65Hz)<br>3±5°C,相对湿度 85%以下(无结露<br>0 - 50°C,相对湿度 85%以下(无结露<br>0 - 60°C,相对湿度 85%以下(无结露                                                                                                                                                                                                  | AC0 - 200Arms<br>±1.0°以内<br>(2 - 200A/45 - 65Hz)<br>彩)                                                                         |
| 精确度         (正弦波输入)         相位特性         精确度保证         温湿度范围         使用温湿度范围         保存温湿度范围         最大输入允许范围         輸出阻抗         使用环境         安全规格                                                                                                                                                         | +±2.0°以内<br>(0.5 - 50A/45 - 65Hz)<br>2:<br>0<br>-2:<br>AC50Arms (50/60Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±0.5%rdg±0.1mV (50/60Hz)<br>±1.0%rdg±0.2mV (40Hz - 1kHz)<br>±2.0°以内<br>(1 - 100A/45 - 65Hz)<br>3±5°C,相对湿度 85%以下(无结露<br>0 - 60°C,相对湿度 85%以下(无结露<br>0 - 60°C,相对湿度 85%以下(无结露                                                                                                                                                                                                                   | ±1.0°以内<br>(2 - 200A/45 - 65Hz)<br>彩)                                                                                          |
| 相位特性       精确度保证       温湿度范围       使用温湿度范围       保存温湿度范围       最大输入允许范围       输出阻抗       使用环境       安全规格                                                                                                                                                                                                     | +2.0°以内<br>(0.5 - 50A/45 - 65Hz)<br>2:<br>0<br>-2:<br>AC50Arms (50/60Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +2.0°以内<br>(1 - 100A/45 - 65Hz)<br>3±5°C,相对湿度 85%以下(无结露<br>) - 50°C,相对湿度 85%以下(无结露<br>0 - 60°C,相对湿度 85%以下(无结露<br>0 - 60°C,相对湿度 85%以下(无结露                                                                                                                                                                                                                                                    | ±1.0°以内<br>(2 - 200A/45 - 65Hz)<br>彩)<br>密)                                                                                    |
| 精确度保证<br>温湿度范围<br>使用温湿度范围<br>保存温湿度范围<br>最大输入允许范围<br>输出阻抗<br>使用环境<br>安全规格                                                                                                                                                                                                                                     | 2:<br>0<br>-2:<br>AC50Arms (50/60Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3±5℃,相对湿度 85% 以下(无结露<br>)-50℃,相对湿度 85%以下(无结露<br>0-60℃,相对湿度 85%以下(无结露<br>AC100Arms (50/60Hz)                                                                                                                                                                                                                                                                                                 | 系)<br>()<br>()                                                                                                                 |
| 使用温湿度范围       保存温湿度范围       最大输入允许范围       输出阻抗       使用环境       安全规格                                                                                                                                                                                                                                        | 0<br>-2<br>AC50Arms (50/60Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )-50℃,相对湿度85%以下(无结露<br>0-60℃,相对湿度85%以下(无结晶<br>AC100Arms(50/60Hz)                                                                                                                                                                                                                                                                                                                            | )<br>客)                                                                                                                        |
| 保存温湿度范围       最大输入允许范围       输出阻抗       使用环境       安全规格                                                                                                                                                                                                                                                      | -20<br>AC50Arms (50/60Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-60℃,相对湿度 85%以下(无结)<br>AC100Arms (50/60Hz)                                                                                                                                                                                                                                                                                                                                                 | 落)                                                                                                                             |
| 最大输入允许范围       输出阻抗       使用环境       安全规格                                                                                                                                                                                                                                                                    | AC50Arms (50/60Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AC100Arms (50/60Hz)                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                |
| 输出阻抗       使用环境       安全规格                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             | AC200Arms(50/60Hz)                                                                                                             |
| 使用环境<br>安全规格                                                                                                                                                                                                                                                                                                 | 约 2 <b>0Ω</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 约 10Ω                                                                                                                                                                                                                                                                                                                                                                                       | 约 5Ω                                                                                                                           |
|                                                                                                                                                                                                                                                                                                              | 室内使用,海抜 2000 米以下           IEC 61010-1,IEC 61010-2-032         IEC 61010-1, IEC 61010-2-032           CAT. III (300V), 污染度 2         CAT. III (600V),           IEC 61326         污染度 2, IEC61326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |
| 耐电压                                                                                                                                                                                                                                                                                                          | AC3540V/5 秒.<br>钳口和外箱间,<br>外箱和输出端口间<br>钳口和输出端口间                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             | AC3350V/5 秒<br>钳口和外箱间,<br>外箱和输出端口间<br>钳口和输出端口间                                                                                 |
| 绝缘电阻                                                                                                                                                                                                                                                                                                         | 50MΩ以上/1000V<br>钳口和处箝间,处箝和输出端口间,钳口和输出端口间                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |
| 最大测试导体直径                                                                                                                                                                                                                                                                                                     | 约 ø24mm (最大.) 约 ø40mm (最大)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                             | 约 ø40mm (最大)                                                                                                                   |
| 外形尺寸                                                                                                                                                                                                                                                                                                         | 100(L)×60(W)×26(D)mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                             | 128(L)×81(W)×36(D)mm                                                                                                           |
| 电线长度                                                                                                                                                                                                                                                                                                         | 约 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |
| 输出端口                                                                                                                                                                                                                                                                                                         | MINI DIN 6PIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |
| 重量                                                                                                                                                                                                                                                                                                           | 约 160g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                             | 约 260g                                                                                                                         |
| 附件                                                                                                                                                                                                                                                                                                           | 使用说明书<br>电线标签                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |
| 可选件                                                                                                                                                                                                                                                                                                          | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46 (蕉形ø4 变换插头), 7185(延长                                                                                                                                                                                                                                                                                                                                                                     | 线)                                                                                                                             |

|                | <model8125></model8125>                                           | <model8124></model8124>                    |  |  |
|----------------|-------------------------------------------------------------------|--------------------------------------------|--|--|
|                |                                                                   |                                            |  |  |
| 额定电流           | AC 500Arms (707A 峰值)                                              | AC 1000Arms (1414A 峰值)                     |  |  |
| 输出电压           | AC0 - 500mV<br>(AC500mV/500A):AC 1mV/A                            | AC0 - 500mV<br>(AC500mV/1000A):0.5mV/A     |  |  |
| 测试范围           | AC0 - 500Arms                                                     | AC0 - 1000Arms                             |  |  |
| 精确度            | ±0.5%rdg±0.1mV (50/60Hz)                                          | ±0.5%rdg±0.2mV (50/60Hz)                   |  |  |
| (正弦波输入)        | ±1.0%rdg±0.2mV (40Hz - 1kHz)                                      | ±1.5%rdg±0.4mV (40Hz - 1kHz)               |  |  |
| 相位特性           | ±1.0°以内<br>(5 - 500A/45 - 65Hz)                                   | ±1.0°以内<br>(10 - 1000A/45 - 65Hz)          |  |  |
| 精确度保证<br>温湿度范围 | 23±5℃,相对湿度 85% 以下 (无结露)                                           |                                            |  |  |
| 使用温湿度范围        | 0-50℃,相对湿度 85% 以下(无结露)                                            |                                            |  |  |
| 保存温湿度范围        | -20-60℃,相对湿度                                                      | 85% 以下(无结露)                                |  |  |
| 最大输入允许范围       | AC500Arms (50/60Hz)                                               | AC1000Arms (50/60Hz)                       |  |  |
| 输出阻抗           | 约 2Ω                                                              | 约 1Ω                                       |  |  |
| 使用环境           | 室内使用,海拔 2000 米以下                                                  |                                            |  |  |
| 安全规格           | IEC 61010-1,IEC 61010-2-032<br>CAT. III (600V), 污染度 2<br>IEC61326 |                                            |  |  |
| 耐电压            | AC5350V/5 秒<br>钳口和外箱间,外箱和输出端口间,钳口和输出端口间                           |                                            |  |  |
| 绝缘电阻           | 50MΩ以<br>钳口和外箱间,外箱和输出                                             | 50MΩ以上 / 1000V<br>钳口和外箱间,外箱和输出端口间,钳口和输出端口间 |  |  |
| 最大测试导体直径       | 约 ø40mm (最大)                                                      | 约 Ø68mm (最大)                               |  |  |
| 外形尺寸           | 128(L)×81(W)×36(D)mm                                              | 186(L)×129(W)×53(D)mm                      |  |  |
| 电线长度           | 约                                                                 | 约 3m                                       |  |  |
| 输出端口           | MINI D                                                            | IN 6PIN                                    |  |  |
| 重量             | 约 260g                                                            | 约 510g                                     |  |  |
| 附件             |                                                                   |                                            |  |  |
| 可选件            | <b>7146 (</b> 蕉形ø4 变换插头), <b>7185</b> (延长线)                       |                                            |  |  |

| KEW6315                                                                                                                                              | 10.4 钳形传感器规格                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| <kew8129></kew8129>                                                                                                                                  | <kew8130></kew8130>                                        |
|                                                                                                                                                      |                                                            |
| 300A 量程:         AC         300 Arms( 424A 峰值)           1000A 量程:         AC 1000 Arms(1414A 峰值)           3000A 量程:         AC 3000 Arms(4243A 峰值) | AC 1000 Arms(1850A 峰值)                                     |
| 300A 量程: AC0 - 500mV(AC500mV/AC 300A):1.67mV/A<br>1000A 量程: AC0 - 500mV(AC500mV/AC1000A):0.5mV/A<br>3000A 量程: AC0 - 500mV(AC500mV/AC3000A):0.167mV/A | AC0 - 500mV<br>(AC500mV/AC1000A):0.5mV/A                   |
| 300A 量程: 30 - 300Arms<br>1000A 量程: 100 - 1000Arms<br>3000A 量程: 300 - 3000Arms                                                                        | AC0 - 1000Arms                                             |
| <b>±1.0%rdg (45 - 65Hz)</b><br>(传感器中央处测试)                                                                                                            | ±0.5%rdg±0.2mV (45 - 65Hz)<br>±1.5%rdg±0.4mV (40Hz - 1kHz) |
| <u>+1.0°</u> 以内<br>(各量程的测试范围: 45 - 65Hz)                                                                                                             | ±2.0°以内(45 - 65Hz)<br>±3.0°以内(40 - 1kHz)                   |
|                                                                                                                                                      | % 以下 (无结露)                                                 |
| -10 - 50°C,相对湿度 8                                                                                                                                    | 5% 以下(无结露)                                                 |
| -20-60°C,相对湿度 85% 以下(无结露)                                                                                                                            |                                                            |
| AC3600Arms (50/60Hz)                                                                                                                                 | AC1300Arms (50/60Hz)                                       |
| 约 100Ω 以下                                                                                                                                            |                                                            |
| 室内使用,海拔 2000 米以下                                                                                                                                     |                                                            |
| IEC 61010-1,IEC 61010-2-032                                                                                                                          | IEC 61010-1,IEC 61010-2-032                                |
| CAI. III (600V) 汚染度 2<br>IEC61226                                                                                                                    | CAI. III (600V)/CAI.IV (300V) 汚染度 2<br>IEC61226            |
| ΔC5350\//5 秋:                                                                                                                                        | ΔC5160\//5 税:                                              |
| 回路与传咸器间                                                                                                                                              | 回路与传咸器间                                                    |
| 50MΩ or m                                                                                                                                            | ore/ 1000V                                                 |
| 回路与传感器间                                                                                                                                              |                                                            |
| 约 ø150mm (最大)                                                                                                                                        | 约 ø110mm (最大)                                              |
| 111(L)×61(W)×43(D)mm (不含突出部分)                                                                                                                        | 65(L)×25(W)×22(D)mm                                        |
| 传感器部分:约 2m                                                                                                                                           | 传感器部分:约 2.7m                                               |
| 输出线:约 1m                                                                                                                                             | h 输出线:约 0.2m                                               |
| MINI D                                                                                                                                               | IN 6PIN                                                    |
| 8129-1:约 410g/8129-2:约 680g/8129-3:约 950g                                                                                                            | 约 170g                                                     |
|                                                                                                                                                      | )                                                          |
|                                                                                                                                                      | -                                                          |

| 0.4 钳形传感器规格      |                                  |                                                                           | KEW6315                           |
|------------------|----------------------------------|---------------------------------------------------------------------------|-----------------------------------|
|                  | <model8141></model8141>          | <model8142></model8142>                                                   | <model8143></model8143>           |
|                  |                                  |                                                                           |                                   |
| 额定电流             |                                  | AC1000mArms                                                               |                                   |
| 输出电压             |                                  | AC0 - 100mV(AC100mV/AC1000m/                                              | 4)                                |
| 测试范围             |                                  | AC0 - 1000mArms                                                           |                                   |
| 精确度<br>(正弦波输入)   |                                  | ±1.0%rdg±0.1mV (50/60Hz)<br>±2.0%rdg±0.1mV (40Hz - 1kHz                   | :)                                |
| 相位特性             |                                  |                                                                           |                                   |
| 精确度保证<br>温湿度范围   | 2:                               | 3 <b>±5℃,</b> 相对湿度 85% 以下(无结露                                             | <b>客</b> )                        |
| 使用温湿度范围          | 0                                | - 50℃, 相对湿度 85% 以下(无结                                                     | 索)                                |
| 保存温湿度范围          | -20                              | <b>)-60℃</b> ,相对湿度 85% 以下(无结                                              | 露)                                |
| 最大输入允许泡围<br>检山四拉 | AC100Arms (50/60Hz)              | AC200Arms (50/60Hz)                                                       | AC500Arms (50/60Hz)               |
|                  | ≊1 I <b>0</b> 07                 | <u>約 2001</u><br>安内伸田 海拔 2000 米以下                                         | ≋y 120Ω                           |
| 安全规格             |                                  | EC 61010-1,IEC 61010-2-032<br>CAT. III (300V), 污染度 2<br>IEC61326 (EMC 标准) |                                   |
| 耐电压              | 钳口和夕                             | AC3540V/5 秒<br>卜箱间,钳口和输出端口间,外箱和轴                                          | 俞出端口间                             |
| 绝缘电阻             | 钳口和夕                             | 50MΩ 以上/ 1000V<br>、箱间,钳口和输出端口间,外箱和轴                                       | 命出端口间                             |
| 最大测试导体直径         | 约 ø24mm (最大)                     | 约 Ø40mm (最大)                                                              | 约 ø68mm (最大)                      |
| 外形尺寸             | 100(L)×60(W)×26(D)mm<br>(不含突出部分) | 128(L)×81(W)×36(D)mm<br>(不含突出部分)                                          | 186(L)×129(W)×53(D)mm<br>(不含突出部分) |
| 电线长度             |                                  | 约 2m                                                                      |                                   |
| 输出端口             |                                  | MINI DIN 6PIN                                                             |                                   |
| 重量               | 约 150g                           | 约 240g                                                                    | 约 490g                            |
| 附件               |                                  | 使用说明予<br>便携箱                                                              |                                   |
| 可选件              |                                  | 7146 (蕉形 ø 4 变换插头)<br>7185(延长线)                                           |                                   |

10.4 钳形传感器规格

| <kew8146></kew8146>                                                  | <kew8147></kew8147>                                                  | <kew8148></kew8148>                                                   |
|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                      |                                                                      |                                                                       |
| AC 30Arms (42.4A 峰值)                                                 | AC 70Arms (99.0A 峰值)                                                 | AC 100Arms (141.4A 峰值)                                                |
| AC0 - 1500mV(AC50mV/A)                                               | AC0 - 3500mV(AC50mV/A)                                               | AC0 - 5000mV(AC50mV/A)                                                |
| AC0 - 30Arms                                                         | AC0 - 70Arms                                                         | AC0 - 100Arms                                                         |
| 0 - 15A                                                              | 0 - 40A                                                              | 0 - 80A                                                               |
| ±1.0%rdg±0.1mV (50/60Hz)<br>±2.0%rdg±0.2mV (40Hz - 1kHz)<br>15 - 30A | ±1.0%rdg±0.1mV (50/60Hz)<br>±2.0%rdg±0.2mV (40Hz - 1kHz)<br>40 - 70A | ±1.0%rdg±0.1mV (50/60Hz)<br>±2.0%rdg±0.2mV (40Hz - 1kHz)<br>80 - 100A |
| ±5.0%rdg (50/60Hz)                                                   | ±5.0%rdg (50/60Hz)                                                   | ±5.0%rdg (50/60Hz)                                                    |
| ±10.07010g (+0 11112)                                                | ±10.07610g (40 11112)                                                | ±10.07610g (40 11112)                                                 |
|                                                                      |                                                                      |                                                                       |
| AC30Arms (50/60Hz)                                                   | AC70Arms (50/60Hz)                                                   | AC100Arms (50/60Hz)                                                   |
| 约 90Ω                                                                | 约 100Ω                                                               | 约 60Ω                                                                 |
|                                                                      | 室内使用,海拔 2000 米以下                                                     |                                                                       |
|                                                                      | IEC 61010-1,IEC 61010-2-032                                          |                                                                       |
|                                                                      | CAT. III (300V) 污染度 2                                                |                                                                       |
|                                                                      | IEC61326                                                             |                                                                       |
|                                                                      |                                                                      | u n ha                                                                |
| 相口有                                                                  | 19个相间,外相和制出场口间,相口和制出。                                                | 而口則                                                                   |
| 50MΩ 以上/ 1000V<br>钳口和外箱间,外箱和输出端口间,钳口和输出端口间                           |                                                                      |                                                                       |
| 约 ø24mm (最大)                                                         | 约 ø40mm (最大)                                                         | 约 ø68mm (最大)                                                          |
| 100(L)×60(W)×26(D)mm                                                 | 128(L)×81(W)×36(D)mm                                                 | 186(L)×129(W)×53(D)mm                                                 |
|                                                                      | 约 2m                                                                 |                                                                       |
|                                                                      | MINI DIN 6PIN                                                        |                                                                       |
| 约 150g                                                               | 约 240g                                                               | 约 510g                                                                |
|                                                                      | 使用说明书                                                                |                                                                       |
|                                                                      | 电线标签                                                                 |                                                                       |
|                                                                      | 7146 (蕉形 ø 4 变换插头)                                                   |                                                                       |
|                                                                      | 7185(延长线)                                                            |                                                                       |

# 11. 疑似故障

### 11.1 故障查找

使用本仪器时若发现有疑似故障的情况下请先确认以下事项。如果不符合以下情况,请联系本公司或代理商。

| 症状                         | 确认事项                                                                                                                                                                                                                                                                                                                        |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 操作电源键,却不能接通电源。<br>(没有任何显示) | <ul> <li>使用 AC 电源:</li> <li>请确认电源线是否正确连接插座。</li> <li>请确认电源线是否断线。</li> <li>请确认电源电压是否在允许范围内。</li> <li>使用电池:</li> <li>请确认电池的极性方向是否安装正确。</li> <li>使用单 3 形 Ni-HM 电池时请确认是否充电完全。</li> <li>使用单 3 形碱性干电池时,请确认电池是否耗尽。</li> <li>差不是以上问题:</li> <li>先取下 AC 电源线,将所有电池取出后再全部安装,然后接通</li> <li>AC 电源线尝试接通电源。此时若仍然无法接通电源,则可能是本体故障。</li> </ul> |
| 无法操作按键                     | <ul><li> 请确认锁定功能是否启动。</li><li> 请确认本说明书中各测试量程的有效键。</li></ul>                                                                                                                                                                                                                                                                 |
| 测试值不显示<br>测试显示值不稳定或显示异常    | <ul> <li>请确认电压的 1 通道中输入的频率是否在精确度保证范围类。<br/>可测试范围为 40~70Hz。</li> <li>请确认电压测试线和钳形传感器是否连接正确。</li> <li>请确认测试线对应的仪器设定和接线是否正确。</li> <li>请确认所使用的钳形传感器和传感器设定是否正确。</li> <li>请确认电压测试线是否断线。</li> <li>请确认输入信号中没有混入干扰。</li> <li>请确认附近没有强电磁波。</li> <li>请确认使用环境符合本仪器的规格标准。</li> </ul>                                                      |
| 大法保存到内存                    | <ul> <li>● 请确认保存文件数。</li> <li>● 请确认是否插入 SD 卡。若已插入 SD 卡,则无法保存到内存。</li> </ul>                                                                                                                                                                                                                                                 |

| 症状              | 确认事项                                                                                                                                                                                              |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 无法保存到 SD 卡      | <ul> <li>请确认 SD 卡是否正确插入。</li> <li>请确认 SD 卡是否已格式化。</li> <li>请确认是否超过 SD 卡的容量。</li> <li>请确认使用的 SD 卡的保存文件数或容量。</li> <li>请确认使用的 SD 卡是否本仪器的已确认的卡。</li> </ul>                                            |
| USB 通信无法进行下载和设定 | <ul> <li>请确认已知硬件是否正常工作。</li> <li>请确认使用 USB 线正确连接本体和电脑。</li> <li>请确认在通信软件"KEW Windows for KEW6315" 上已显示连接设备。如未显示,则可能是 USB 驱动没有正常安装。请参考<br/>"KEW Windows for KEW6315" 安装说明书在电脑上重新安装驱动程序。</li> </ul> |
| 自我诊断功能中频繁显示 NG  | 若"SD卡"项目显示 NG,请参考"无法保存到 SD 卡"的内容。<br>若其他诊断结果显示 NG,请先取下 AC 电源线,将所有电池取出<br>后再全部安装,然后接通 AC 电源线,再次自我诊断。此时,如<br>果仍然显示 NG,则可能是本体发生故障。                                                                   |

## 11.2 错误信息的内容和相应的处理方法

本仪器在使用过程中,画面上可能会显示一些信息。 对于这些信息的内容和相应的处理方法如下:

| 信息                                                                                          | 内容和对策                                                                                             |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 没有插入 SD 卡         为了传送数据,请插入可使用的 SD 卡         为读取设定,请插入可使用的 SD 卡         为保存设定,请插入可使用的 SD 卡 | ● 请确认是否正确插入 SD 卡。详情请参考 P33 "4.3 SD 卡的插入/<br>取出方法"                                                 |
| 请确认是否插入内存空间足够的 SD<br>卡<br>SD 卡内存空间不足<br>请格式化或删除数据                                           | <ul> <li>请确认 SD 卡的内存。内存不足时请删除保存的文件或格式化或使<br/>用在本体上已格式化的其他 SD 卡。详情请参考"记录数据的操作"<br/>P82.</li> </ul> |

| 信息                      | 内容和对策                                                                                                                                                                                                             |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 无法正确识别。<br>请再次确认连接的传感器。 | <ul> <li>请确认电流传感器确实地连接本体。</li> <li>若疑似故障时请确认以下顺序:<br/>请将识别为 NG 的电流传感器所连接的通道和已正确识别的通道<br/>换后再次尝试测试。此时,如果和上次一样,通道识别为 NG 的<br/>则可能是本体故障。连接上次识别为 NG 的电流传感器的通道可<br/>识别为 NG 的话,则可能是电流传感器故障,如果是故障,请<br/>停止使用。</li> </ul> |
| 电池剩余量太少,关闭电源            | <ul> <li>请使用 AC 电源或更换 6 节新的单 3 形碱性干电池或已充电的<br/>形 Ni-MH 充电电池。详情请参考"干电池的设置方法" P31。</li> </ul>                                                                                                                       |
| 内存空间不足<br>请格式化或删除数据     | <ul> <li>请确认内存空间和保存文件数。内存中可保存的文件数是测试数3个文件,其他8个文件。内存不足时请删除保存文件或格式保详情请参考"记录数据的操作"P82。</li> </ul>                                                                                                                    |
| 无法读取设定文件<br>文件可能已破坏     | <ul> <li>请再次读取设定文件。如果还是不能读取,若是 SD 卡中记录的<br/>定文件则可能是 SD 卡或本体发生故障,若是内存中的设定文件<br/>则可能是本体发生故障。如果是本体发生故障,请立刻停止使用</li> </ul>                                                                                            |
| 空间不足<br>请确认 SD 卡及内存的空间  | ● 请确认 SD 卡的空间和内存的空间以及保存文件数。<br>内存中可保存的文件数是测试数据 3 个文件,其他 8 个文件。<br>内存不足时请删除保存文件或格式化,若使用 SD 卡的话,请何                                                                                                                  |
| 可记录空间不足                 | 在本体上已格式化的其他 SD 卡。详情请参考"记录数据的<br>P82。                                                                                                                                                                              |
| 指定了过去的时间<br>请确认记录开始方法   | <ul> <li>记录的"开始方法"中选择连续记录/指定时间带,记录完成的F</li> <li>设定为过去的时间时会显示此信息。请确认各记录方法中设定f</li> <li>期。</li> <li>详情请参考"8/9每个开始方法的设定"P45。</li> </ul>                                                                              |
| 不能开始记录                  | <ul> <li>请确认 SET UP 的"记录设定"是否矛盾。详情请参考"5.4 计设定"P71。</li> <li>请开始再次记录。仍然无法开始记录时,若记录对象是 SD 卡,可能是 SD 卡或本体发生故障,若记录对象时内存,则可鞥呢是体发生故障。如果是本体发生故障,请立刻停止使用。</li> </ul>                                                       |

| 信息                                         | 内容和对策                                                                                                               |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 记录中及记录待机中无法变更本体<br>设定                      | <ul> <li>记录中只能确认设定。如需变更设定,必须停止记录,在"记录停止"提示信息消失后才能变更。</li> </ul>                                                     |
| 识别与上次不同的传感器。<br>测试前请再次确认 SET UP 的基本设<br>定。 | <ul> <li>连接与上次测试时所使用的传感器不同的传感器时显示。</li> <li>请在 SET UP 的"基本设定"中设定现在连接的传感器或在"识别传感器"中自动识别目前所使用的传感器。</li> </ul>         |
| 传感器连接不正确<br>请再次确认连接的传感器                    | <ul> <li>请确认是否连接了与接线方式中测试通道不同种类的电流传感器。只能使用测试所用电流传感器同种类的传感器。</li> </ul>                                              |
| SD 卡内存空间不足<br>记录停止                         | <ul> <li>必须停止记录,等"停止记录"提示信息消失后将保存文件备份到<br/>电脑后,删除文件或格式化或使用已在本体上格式化的其他 SD 卡<br/>后再开始记录。详情请参考"记录数据的操作"P82。</li> </ul> |
| 内存空间不足<br>记录停止                             | <ul> <li>必须停止记录,等"停止记录"提示信息消失后将保存文件备份<br/>到电脑或 SD 卡后,删除文件或格式化后再开始记录。详情请参<br/>考"记录数据的操作"P82。</li> </ul>              |

